Skip to main content
Log in

Multi-scale effect of acoustic emission characteristics of 3D rock damage

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Scale effect and acoustic emission characteristics of rock damage are two important topics in rock engineering research. In this paper, considering different rock scales and establishing the 3D numerical rock models by means of PFC software platform firstly, the mechanical properties and acoustic emission characteristics were studied. Finally, based on the acoustic emission, characteristic discussed the damage evolution law of the rock models. The research result shows that the multi-scale mainly affects the peak strength, peak strain, and elastic modulus of the mechanic properties, affects the maximum acoustic emission event number, strain range of serious acoustic emission events of the acoustic emission characteristics, affects the damage rapid increase and damage failure stages of the damage evolution process. The stress-strain curves, acoustic emission events curves, and damage variable curves can be divided into three stages and different scales have different effect on these stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Cai M, Kaiser PK, Morioka H et al (2007) FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations [J]. Int J Rock Mech Min Sci 44(4):550–564

    Article  Google Scholar 

  • Cho N, Martin CD, Sego DC (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44(7):997–1010

    Article  Google Scholar 

  • Cuisiat FD, Haimson BC (1992) Scale effects in rock mass stress measurements [C]. International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon 29(2):99–117

    Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies [J]. Geotechnique 29(1):47–65

    Article  Google Scholar 

  • Guo M, Hu Y, Li J (2002) Multiscale effect in material transition process [M]. Heilongjiang Education Press, Harbin, pp 5–16

    Google Scholar 

  • Hazzard JF, Young RP, Maxwell SC (2000) Micromechanical modeling of cracking and failure in brittle rocks [J]. J Geophys Res Solid Earth 105(B7):16683–16697

    Article  Google Scholar 

  • Heuze FE (1980) Scale effects in the determination of rock mass strength and deformability [J]. Rock Mech 12(3–4):167–192

    Article  Google Scholar 

  • Hirata A, Kameoka Y, Hirano T (2007) Safety management based on detection of possible rock bursts by AE monitoring during tunnel excavation [J]. Rock Mech Rock Eng 40(6):563–576

    Article  Google Scholar 

  • Itasca Consulting Group. PFC2D(particle flow code in 2 dimensions) users guide [R]. Minneapolis:Itasca Consulting Group, 2008:1–42

  • Khazaei C, Hazzard J, Chalaturnyk R (2015) Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling [J]. Comput Geotech 67:94–102

    Article  Google Scholar 

  • Lemaitre J, Sermage JP, Desmorat R (1999) A two scale damage concept applied to fatigue. [J]. Int J Fract 97(1):67–81

    Article  Google Scholar 

  • Liu Q, Xu J, Liu X et al (2015) The role of flaws on crack growth in rock-like material assessed by AE technique [J]. Int J Fract 193(2):99–115

    Article  Google Scholar 

  • Liu W-R, Wang X, Li C-M (2019a) Numerical study of damage evolution law of coal mine roadway by particle flow code (PFC) model [J]. Geotech Geol Eng 37(4):1–9

    Google Scholar 

  • Liu W, Yuan W, Yan Y et al (2019b) Analysis of acoustic emission characteristics and damage constitutive model of coal-rock combined body based on particle flow code [J]. Symmetry 11(8):1040

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock [J]. Int J Rock Mech Min Sci 41:1329–1364

    Article  Google Scholar 

  • Qin Z, Fu H, Chen X (2019) A study on altered granite meso-damage mechanisms due to water invasion-water loss cycles [J]. Environ Earth Sci 78(14):428

    Article  Google Scholar 

  • Shkuratnik VL, Filimonov YL, Kuchurin SV (2005) Regularities of acoustic emission in coal samples under triaxial compression [J]. J Min Sci 41(1):44–52

    Article  Google Scholar 

  • Słowik M, Smarzewski P (2012) Study of the scale effect on diagonal crack propagation in concrete beams [J]. Comput Mater Sci 64:216–220

    Article  Google Scholar 

  • Su H, Dang C, Li Y (2011) Study of numerical simulation of acoustic emission in rock of inhomogeneity [J]. Rock Soil Mech 32(6):1886–1890

    Google Scholar 

  • Tang CA, Tham LG, Wang SH et al (2007) A numerical study of the influence of heterogeneity on the strength characterization of rock under uniaxial tension [J]. Mech Mater 39(4):326–339

    Article  Google Scholar 

  • Wang X, Tian L (2018) Mechanical and crack evolution characteristics of coal–rock under different fracture-hole conditions: a numerical study based on particle flow code [J]. Environ Earth Sci 77(8):297

    Article  Google Scholar 

  • Wang X, Wen Z, Jiang Y et al (2018) Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads[J]. Rock Mechanics and Rock Engineering 51 (3):729-745

    Article  Google Scholar 

  • Wan-rong L (2019) Experimental and numerical study of rock stratum movement characteristics in Longwall mining [J]. Shock Vib 2019:1–15. https://doi.org/10.1155/2019/5041536

    Article  Google Scholar 

  • Wen Z, Wang X, Chen L et al (2017) Size effect on acoustic emission characteristics of coal-rock damage evolution [J]. Adv Mater Sci Eng

  • Xu J, Wu H, Lu L et al (2012) Experimental study of acoustic emission characteristics during shearing process of sandstone under different water contents [J]. Chin J Rock Mech Eng 31(5):914–920

    Google Scholar 

  • Yang S, Liu X, Li Y (2012) Experiment analysis of mechanical behavior of sandstone containing hole and fissure under uniaxial compression [J]. Chin J Rock Mech Eng 31(Supp.2):3539–3546

    Google Scholar 

  • Yoshinaka R, Osada M, Park H et al (2008) Practical determination of mechanical design parameters of intact rock considering scale effect [J]. Eng Geol 96(3–4):173–186

    Article  Google Scholar 

  • Zaytsev DV, Kochanov AN, Panteleev IA et al (2017) Influence of the scale effect in testing the strength of rock samples [J]. Bull Russ Acad Sci Phys 81(3):337–340

    Article  Google Scholar 

  • Zhang H, Xu JF, He YN (2012) Study of laboratory scale effect of limestone under uniaxial compression [J]. Chin J Rock Mech Eng 31(Sup 2):3491–3496

    Google Scholar 

  • Zong Y, Han L, Wei J et al (2016) Mechanical and damage evolution properties of sandstone under triaxial compression [J]. Int J Min Sci Technol 26(4):601–607

    Article  Google Scholar 

Download references

Funding

The research described in this paper was financially supported by the Liaocheng University Research Fund (NO.318051703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-kang Liu.

Additional information

Responsible Editor: Murat Karakus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Wr., Liu, Jk. & Zhu, C. Multi-scale effect of acoustic emission characteristics of 3D rock damage. Arab J Geosci 12, 668 (2019). https://doi.org/10.1007/s12517-019-4864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4864-4

Keywords

Navigation