Skip to main content

Advertisement

Log in

Sea level rise and future shoreline changes along the sandy coast of Saloum Delta, Senegal

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Saloum River delta coast is currently subject to climate change induced coastal erosion hazard effects. To assess climate change impact, notably sea level rise, on shoreline dynamics and sandy spit evolution in the Saloum River delta coast, a methodology based first on coastal vulnerability index (CVI) has been deployed. Bruun’s rule has been then computed. The results highlight CVIs ranging between 9.13 and 40.82, with a very high vulnerability shoreline extending from Diakhanor to Niodior, a high vulnerability shoreline stretching along the complex from Diakhanor to Ngalou Sam Sam on the one hand and south of Niodior on the other hand, a moderately vulnerable shoreline spanning to the island of Guior and a low vulnerability stretch of the shoreline lying from Guior Island to Sangomar Point. Shoreline retreat would reach −268.08 m by 2050. The Saloum River delta coast could become more vulnerable to climate change as climate hazards intensify, shoreline retreat, and flooding phenomena will be exacerbated by rising sea levels, socio-economic infrastructures could be destroyed and human settlements could be lost. Suitable adaptation options identified focus on the adoption of soft approaches such as strategic retreat or relocation of assets and human settlements, artificial beach nourishment, and/or dune fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abou Samra RM, El-Gammal M, Al-Mutairi N, Alsahli MM, Ibrahim MS (2021) GIS-based approach to estimate sea level rise impacts on Damietta coast, Egypt. Arab J Geosci 14:429. https://doi.org/10.1007/s12517-021-06810-3

    Article  Google Scholar 

  • Al-Mutairi N, Alsahli M, El-Gammal M, Ibrahim M, Abou R, Samra. (2021) Environmental and economic impacts of rising sea levels: a case study in Kuwait's coastal zone. Ocean Coast Manag 205(1):105572. https://doi.org/10.1016/j.ocecoaman.2021.105572

    Article  Google Scholar 

  • Allan JC, Komar PD, Priest GR (2003) Shoreline variability on the high energy Oregon coast and its usefulness in erosion-hazard assessments. J Coast Res 38:83–105. https://www.jstor.org/stable/25736601

  • Anders FJ, Byrnes MR (1991) Accuracy of shoreline change rates as determined from map and aerial photographs. Shore and Beach 59(1):17–26

    Google Scholar 

  • Appeaning Addo K (2013) Assessing coastal vulnerability index to climate change: the case of Accra – Ghana. J Coast Res 65:1892–1897. https://doi.org/10.2112/SI65-320.1

    Article  Google Scholar 

  • Appeaning Addo K (2014) Coastal vulnerability index to sea level rise in Ghana. Coast Mar Res 2(1):1–7. https://doi.org/10.12966/cmr.01.01.2014

  • Atkinson AL, Baldock TE, Birrien F, Callaghan DP, Nielsen P, Beuzen T, Turner IL, Blenkinsopp CE, Ranasinghe R (2018) Laboratory investigation of the Bruun Rule and beach response to sea level rise. Coast Eng 136:183–202. https://doi.org/10.1016/j.coastaleng.2018.03.003

    Article  Google Scholar 

  • Atkinson AL, Baldock TE (2020) Laboratory investigation of nourishment options to mitigate sea level rise induced erosion. Coast Eng 161:103769. https://doi.org/10.1016/j.coastaleng.2020.103769

  • Ausseil-Badie J, Barusseau J-P, Deschamps C, Diop ES, Giresse P, Padzur M (1991) Holocene deltaic sequence in the Saloum estuary. Senegal Quaternary Research 36:178–194. https://doi.org/10.1016/0033-5894(91)90024-Y

    Article  Google Scholar 

  • Barusseau JP (1980) Essai d’evaluation des transports sableux sous l’action des houles entre Saint-Louis et Joal (Sénégal). Bull ASEQLJA 58/59:31–39

    Google Scholar 

  • Bertin X, de Bakker A, van Dongeren A, Coco G, André G, Ardhuin F, Bonneton P, Bouchette F, Castell B, Crawford WC, Davidson M, Deen M, Dodet G, Guérin T, Inch K, Leckler F, McCall R, Muller H, Olabarrieta M et al (2018) Infragravity waves: from driving mechanisms to impacts. Earth-Sci. Rev. 177:774–799. https://doi.org/10.1016/j.earscirev.2018.01.002

    Article  Google Scholar 

  • Boko M, Niang I, Nyong A, Vogel C, Githeko A, Medany M et al (2007) Africa Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, OF Canziani, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 433–467

    Google Scholar 

  • Bouchet L (1998) L'évolution morphodynamique de la pointe de Sangomar (Sénégal) et ses conséquences sur le milieu. In: Mémoire de Maîtrise de Géographie. Université de Caen, Caen, p 125

    Google Scholar 

  • Bruun P (1954) Coastal erosion and the development of beach profiles. In: Beach Erosion Board Technical Memo, 44th edn. US Army Engineer Waterways Experiment Station, Vicksburg

    Google Scholar 

  • Bruun P (1962) Sea-level rise as a cause of shore erosion. J Waterways Harbors Div, ASCE, New York 88:117e130

    Google Scholar 

  • Bruun P (1988) The Bruun rule of erosion by sea-level rise:a discussion on large-scale two- and three-dimensional usages. J Coast Res, Charlottesville 4:627e648

    Google Scholar 

  • Chauveau J-P, Laloë F (1985) La pêche maritime artisanale dans les îles du Saloum : bilan provisoire. Rapport UNESCO sur les Sciences de la Mer 32:108–117. https://www.documentation.ird.fr/hor/fdi:010016333

  • Cowell JP, Thom BG, Jones RA, Everts CH, Simanovic D (2006) Management of uncertainty in predicting climate-change impacts on beaches. J Coast Res 22(1):232–245

    Article  Google Scholar 

  • Coyne MA, Fletcher CH, Richmond BM (1999) Mapping coastal erosion hazard areas in Hawaii: observations and errors. J Coast Res 28:171–184. https://www.jstor.org/stable/25736194

  • Dasgupta S, Laplante B, Meisner C, Wheeler D, Yan J (2007) The impact of sea-level rise on developing countries: a comparative analysis. World Bank Policy Research Working Paper, WPS 4136, p 51. https://openknowledge.worldbank.org/bitstream/handle/10986/7174/wps4136.pdf?sequence=1&isAllowed=y

  • Dennis K, Niang-Diop I, Nicholls RJ (1995) Sea-level rise and Senegal: potential impacts and consequences. J Coast Res, Spec Iss No 14:242–261

    Google Scholar 

  • Diouf PS (1996) Les peuplements de poissons des milieux estuariens de l’Afrique de l’Ouest : l’exemple de l’estuaire hyperhalin du Sine-Saloum. Thèse de Doctorat, Université de Montpellier II, p 267. https://www.documentation.ird.fr/hor/fdi:010008130

  • Dodet G, Melet A, Ardhuin F, Bertin X, Idier D, Almar R (2019) The contribution of wind-generated waves to coastal sea-level changes. Surv Geophys 40:1563–1601. https://doi.org/10.1007/s10712-019-09557-5

    Article  Google Scholar 

  • EGIS International (2013) Etude économique et spatiale de la vulnérabilité et de l’adaptation des zones côtières aux changements climatiques au Sénégal : Analyse spatiale de la vulnérabilité aux changements climatiques de la zone côtière du Sénégal, phase 2. Rapport final (GED00859R). 290 p

  • EUROSION (2004) Living with coastal erosion in Europe: sediment and space for sustainability: Methodology for assessing regional indicators (Part III), Online Report, p 42. http://www.eurosion.org/reports-online/part3.pdf

  • Fletcher CH, Rooney JJ, Barbee M, Lim SC, Richmond B (2003) Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. J Coast Res 38:106–124. https://www.jstor.org/stable/25736602

  • Ford M (2012) Shoreline changes on an urban atoll in the Central Pacific Ocean: Majuro Atoll, Marshall Islands. J Coast Res 28:11–22. https://doi.org/10.2112/JCOASTRES-D-11-00008.1

    Article  Google Scholar 

  • Ford M (2013) Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sens Environ 135:130–140. https://doi.org/10.1016/j.rse.2013.03.027

    Article  Google Scholar 

  • Fox-Kemper B, Hewitt HT, Xiao C, Aðalgeirsdóttir G, Drijfhout SS, Edwards TL, Golledge NR, Hemer M, Kopp RE, Krinner G, Mix A, Notz D, Nowicki S, Nurhati IS, Ruiz L, Sallée J-B, Slangen ABA, Yu Y (2021) Ocean, cryosphere, and sea level change. In: Masson-Delmotte V, Zhai P, Pirani A et al (eds) Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Giardino A, Schrijvershof R, Nederhoff CM, De Vroeg H, Briere C, Tonnon P-K, Caires S, Walstra DJ, Sosa J, Van Verseveld W, Schellekens J, Sloff CJ (2018) A quantitative assessment of human interventions and climate change on the West African sediment budget. Ocean Coast Manag 156:249–265. https://doi.org/10.1016/j.ocecoaman.2017.11.008

    Article  Google Scholar 

  • Gornitz VM, Daniels RC, White TW, Birdwell KR (1994) The development of a coastal risk assessment database: vulnerability to sea-level rise in the U.S. southeast. J Coast Res, Special Issue No. 12:327–338

    Google Scholar 

  • Guilcher A (1954) Rapport sur une mission d'étude de la Langue de Barbarie et l'embouchure du Sénégal. Bulletin Mission d'Aménagement du fleuve Sénégal, Saint-Louis (Sénégal), p 1

    Google Scholar 

  • Hammar-Klose ES, Thieler ER (2001) Coastal vulnerability to sea-level rise: a preliminary database for the U.S. Atlantic, Pacific, and Gulf of Mexico Coasts. U.S. Geological Series, Report, Data Series 68. https://doi.org/10.3133/ds68

  • Hammar-Klose ES, Pendleton EA, Thieler ER, Williams SJ (2003) Coastal vulnerability assessment of Cape Cod National Seashore to sea-level rise. U.S. Geological Survey, Open-File Report, 2002-233. https://doi.org/10.3133/ofr02233

  • Hinkel J, Klein RJT (2009) Integrating knowledge to assess coastal vulnerability to sea-level rise: the development of the DIVA tool. Global Environ Change 19:384–395

    Article  Google Scholar 

  • Hinkel J, Brown S, Exner L, Nicholls RJ, Vafeidis AT, Kebede AS (2012) Sea-level rise impacts on Africa and the effects of mitigation and adaptation: An application of DIVA. Reg Environ Change 12:207–224. https://doi.org/10.1007/s10113-011-0249-2

    Article  Google Scholar 

  • Kebede AS, Nicholls RJ, Hanson S, Mokrech M (2012) Impacts of climate change and sea-level rise: a preliminary case study of Mombasa. Kenya. J Coast Res 28(1A):8–19. https://doi.org/10.2112/JCOASTRES-D-10-00069.1

    Article  Google Scholar 

  • Lima LT, Fernández-Fernández S, Weiss CVC, Bitencourt V, Bernardes C (2021) Free and open-source software for Geographic Information System on coastal management: A study case of sea-level rise in southern Brazil. Reg Stud Mar Sci 48:102025. https://doi.org/10.1016/j.rsma.2021.102025

  • Moore LJ, Griggs GB (2002) Long-term cliff retreat and erosion hotspots along the central shores of the Monterey Bay National Marine Sanctuary. Mar Geol 181(1–3):265–283. https://doi.org/10.1016/S0025-3227(01)00271-7

    Article  Google Scholar 

  • Morton RA, Miller TL, Moore LJ (2004) National assessment of shoreline change: part 1. Historical shoreline changes and associated land loss along the U.S. Gulf of Mexico. Open-File Report 2004-1043, U.S. Geological Survey. https://doi.org/10.3133/ofr20041043

  • Nerem RS et al (2018) Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. U. S. A. 115(9):2022–2025

    Article  Google Scholar 

  • Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS One 10(3):e0118571

    Article  Google Scholar 

  • Niang-Diop I, Dansokho M, Diaw AT, Diouf PS, Faye S, Gueye K, Guissé A, Ly I, Matty F, Ndiaye P, Sène A (2005) Etude de la vulnérabilité des côtes sénégalaises aux changements climatiques. Programme d’Assistance de Pays Bas, Ministère de l’Environnement et de la Protection de la Nature, Rapport final, 151 p

  • Niang I, Dansokho M, Faye S, Gueye K, Ndiaye P (2010) Impacts of climate change on the Senegalese coastal zones: examples of the Cap Vert peninsula and Saloum estuary. Global and Planetary Change 72:294–301. https://doi.org/10.1016/j.gloplacha.2010.01.005

    Article  Google Scholar 

  • Nicholls RJ, Hanson S, Herweijer C, Patmore N, Hallegatte S, Corfee-Morlot J et al (2007) Ranking port cities with high exposure and vulnerability to climate extremes – exposure estimates, OECD environmental working paper, 1st edn. Organisation for Economic Co-operation and Development (OECD), Paris

    Google Scholar 

  • Palmer MD, Domingues CM, Slangen ABA, Dias FB (2021) An ensemble approach to quantify global mean sea-level rise over the 20th century from tide gauge reconstructions. Environ Res Lett 16(4):044043. https://doi.org/10.1088/1748-9326/abdaec accessed November 30, 2021

    Article  Google Scholar 

  • Pendleton EA, Barras JA, Williams SJ, Twichell DC (2010) Coastal vulnerability assessment of the Northern Gulf of Mexico to Sea-Level Rise and Coastal Change. U.S. Geological Survey, Open-File Report, 2010–1146. http://pubs.usgs.gov/of/2010/1146/

  • Pilkey OH, Davis TW (1987) An Analysis of Coastal Recession Models: North Carolina Coast. Society for Sedimentary Geology, Book Chapter, Vol. 41. https://doi.org/10.2110/pec.87.41.0059

  • Pilkey OH, Cooper JAG (2004) Society and sea level rise. Science 303(5665):1781–1782. https://doi.org/10.1126/science.1093515

    Article  Google Scholar 

  • Pramanik MK, Biswas SS, Mukherjee T, Roy AK, Pal R et al (2015) Sea level rise and coastal vulnerability along the eastern coast of India through geo-spatial technologies. J Remote Sens GIS 4:145. https://doi.org/10.4172/2469-4134.1000145

    Article  Google Scholar 

  • Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709. https://doi.org/10.1126/science.1136843

    Article  Google Scholar 

  • Sadio M (2017) Morphodynamique et aménagement des flèches littorales de la côte du Sénégal. Thèse de Doctorat en cotutelle, Université Cheikh Anta Diop de Dakar (Sénégal) et Université Aix - Marseille (France), 403 pages

  • Sadio M, Anthony JE, Diaw AT, Dussouillez P, Fleury JT, Kane A, Almar R, Kestenare E (2017) Shoreline changes on the wave-influenced Senegal River delta, West Africa: the roles of natural processes and human interventions. Water 9:357. https://doi.org/10.3390/w9050357

    Article  Google Scholar 

  • Sadio M, Sakho I, Samou Seujip M, Gueye A, Diouf MB, Deloffre J (2022) Multi-decadal dynamics of the Saloum River delta mouth in climate change context. J Afr Earth Sci. https://doi.org/10.1016/j.jafrearsci.2022.104451

  • Saengsupavanich C (2019) Willingness to restore jetty-created erosion at a famous tourism beach. Ocean Coast Manag 178:104817. https://doi.org/10.1016/j.ocecoaman.2019.104817

    Article  Google Scholar 

  • Saengsupavanich C (2020a) Which eroding site is more urgent for the government?: a reflection from coastal communities. J Coast Conserv 24:9. https://doi.org/10.1007/s11852-020-00729-9

    Article  Google Scholar 

  • Saengsupavanich C (2020b) Deconstructing a jetty to rectify the downdrift erosion. J Sustain Sci Manag 15(2):79–88

    Google Scholar 

  • Saengsupavanich C (2022) Flaws in coastal erosion vulnerability assessment: physical and geomorphological parameters. Arab J Geosci 15:57. https://doi.org/10.1007/s12517-021-09368-2

    Article  Google Scholar 

  • Sakho I, Mesnage V, Lafite R, Deloffre J, Niang I, Faye G (2011) The influence of natural and anthropogenic factors on mangrove dynamics over 60 years: the Somone Estuary, Senegal. Estuarine, Coast Shelf Sci 94:93–101

    Article  Google Scholar 

  • Sarr O (2005) Aire marine protégée, gestion halieutique, diversification et développement local : le cas de la Réserve de Biosphère du Delta du Saloum (Sénégal). Thèse de Doctorat, Université de Bretagne Occidentale, 246 pages

  • Shaw J, Taylor RB, Forbes DL, Ruz M-H, Solomon S (1998) Sensitivity of the Canadian coast to sea-level rise. Geol Surv Canada Bull 505:114

    Google Scholar 

  • Snoussi M, Ouchani T, Niazi S (2008) Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: the case of the Mediterranean eastern zone. Estuarine, Coast Shelf Sci 77(2008):206–2013

    Article  Google Scholar 

  • Tano RA, Aman A, Toualy E, Kouadio YK, François-Xavier BBD, Addo KA (2018) Development of an integrated coastal vulnerability index for the Ivorian coast in West Africa. J Environ Prot Sci 9:1171–1184. https://doi.org/10.4236/jep.2018.911073

    Article  Google Scholar 

  • Thieler ER, Hammar-Klose ES (1999) National assessment of coastal vulnerability to sea-level rise: preliminary results for the U.S. Atlantic Coast. U.S. Geological Survey Open-File Report 99-593. Oneline Report, https://pubs.usgs.gov/of/1999/of99-593/

  • Thieler ER, Hammar-Klose ES (2000a) National assessment of coastal vulnerability to future sea-level rise: preliminary results for the U.S. Pacific Coast: U.S. Geological Survey. Open-File Report 00-178, https://pubs.usgs.gov/of/2000/of00-178/

  • Thieler ER, Hammar-Klose ES (2000b) National assessment of coastal vulnerability to future sea-level rise: preliminary results for the U.S. Gulf of Mexico Coast: U.S. Geological Survey. Open-File Report 00-179, https://pubs.usgs.gov/of/2000/of00-179/

  • Thieler ER, Himmelstoss EA, Zichich JL, Ergul A (2009) The Digital Shoreline Analysis System (DSAS) Version 4.0 - An ArcGIS extension for calculating shoreline change. Open-File Report 2008-1278, U.S. Geological Survey. https://doi.org/10.3133/ofr20081278

  • UEMOA (2017) Bilan 2016 des littoraux d’Afrique de l’Ouest. Document Général, MOLOA, p 148

    Google Scholar 

  • Wang X-Y, Lee H, Kwon S (2018) Analysis of service life of cracked marine concrete considering global warming and Bruun rule. Int J Sustain Build Technol Urban Dev 9(2):61–73. https://doi.org/10.22712/susb.20180007

    Article  Google Scholar 

  • Woodroffe CD (2003) Coasts: form, process and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • World Meteorological Organization (WMO) (2021) State of the global climate 2021. Report 1290:57

  • Yates-Michelin M, Le Cozannet G, Krien Y et Lenôtre N (2011) Amélioration de la méthode RNACC : caractérisation des incertitudes relatives à la quantification des impacts de l’élévation du niveau marin. BRGM/RP 59405-FR, Rapport Final, 142 p

  • Zhang K, Douglas B, Leatherman S (2004) Global warming and coastal erosion. Clim Change 64:41–58

    Article  Google Scholar 

Download references

Acknowledgments

This research and results of this publication contributed to the work under Component 2 of the Science Support Project for National Adaptation Plan Processes in Least Developed Francophone Countries of Sub-Saharan Africa (PAS-PNA). The authors would like to thank the Climate Analytics team for his contribution as well as all PAS-PNA Senegalese Coastal Zone research consortium members who facilitated the provision of the data needed for the study.

Funding

This study is funded as part of the PAS-PNA project, funded under the International Climate Initiative (ICI) of the German Federal Ministry of the Environment, the Protection of Nature and Nuclear Safety (BMU) by a decision of the Parliament of the Federal Republic of Germany, and implemented by Climate Analytics gGmbH, and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issa Sakho.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Attila Ciner

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakho, I., Sadio, M., Camara, I. et al. Sea level rise and future shoreline changes along the sandy coast of Saloum Delta, Senegal. Arab J Geosci 15, 1547 (2022). https://doi.org/10.1007/s12517-022-10741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10741-y

Keywords

Navigation