Skip to main content

Advertisement

Log in

Evaluation of object-based image analysis techniques on very high-resolution satellite image for biomass estimation in a watershed of hilly forest of Nepal

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Methods of forest carbon estimation using remote-sensing data and techniques are evolving within a short timeframe as compared to traditional forest inventory methods. Object-based image analysis (OBIA) provided new opportunities to improve biomass and carbon stock estimation and mapping by delineating and classifying crown projection area (CPA) of individual trees. In this paper, image segmentation techniques of OBIA (region growing and valley following) are being applied on GeoEye-1 satellite data and compared in terms of accuracy in Ludhikhola watershed in the Gorkha District of Nepal. Accuracy assessment of tree crown delineation of both segmentation approaches were analyzed using accuracy measures of D and one-to-one (1:1) correspondence. The combination of over-segmentation and under-segmentation, D is interpreted as the “closeness” measure to an ideal segmentation result in relation to a predefined reference set. Region growing and valley following segmentation 68 and 58 % accuracy, respectively, was achieved and linear regression model was developed for carbon stock for Shorea robusta which resulted into a coefficient of determination value of 0.67 at 95 % confidence level and the coefficient of determination resulted into a value of 0.70 for other species. The research concluded that region growing approach showed better delineation as compared to valley follow approach, since it used both features of local maxima and local minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharya KP (2002) Twenty-four years of community forestry in Nepal. Int For Rev 4(2):149–156

    Google Scholar 

  • Baccini A, Friedl M, Woodcock C, Warbington R (2004) Forest biomass estimation over regional scales using multisource data. Geophys Res Lett 31:1–4

    Article  Google Scholar 

  • Basuki TM, Van Laake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manag 257(8):1684–1694

    Article  Google Scholar 

  • Bonnor GM (1985) Inventory of forest biomass in Canada. Canadian Forest Service, Petawawa National Forest Institute, Chalk River

    Google Scholar 

  • Brandtberg T (2002) Individual tree-based species classification in high spatial resolution aerial images of forests using fuzzy sets. Fuzzy Sets Syst 132(3):371–387. doi:10.1016/S0165-0114(02)00049-0

    Article  Google Scholar 

  • Brandtberg T, Walter F (1998) Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis. Mach Vis Appl 11(2):64–73

    Article  Google Scholar 

  • Bunting P, Lucas R (2006) The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data. Remote Sens Environ 101(2):230–248

    Article  Google Scholar 

  • Chubey MS, Franklin SE, Wulder MA (2006) Object-based analysis of ikonos-2 imagery for extraction of forest inventory parameters. Photogramm Eng Remote Sens 72:383–394

    Article  Google Scholar 

  • Clinton N, Holt A, Scarborough J, Yan L, Gong P (2010) Accuracy assessment measures for object-based image segmentation goodness. Photogramm Eng Remote Sens 76:289–299

    Article  Google Scholar 

  • Coillie FMB, Verbeke LPC, Wulf RR (2008) Semi-automated forest stand delineation using wavelet based segmentation of very high resolution optical imagery. In: Blaschke T, Lang S, Hay GJ (eds) Object-based image analysis. Lecture Notes in Geoinformation and Cartography. Springer Berlin Heidelberg, pp 237–256. doi:10.1007/978-3-540-77058-9_13

  • Cui W, Guan Z, Zhang Z (2008) An improved region growing algorithm for image segmentation. Paper presented at the International Conference on Computer Science and Software Engineering

  • Culvenor DS (2002) TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Comput Geosci 28(1):33–44. doi:10.1016/S0098-3004(00)00110-2

    Article  Google Scholar 

  • Definiens (2004) eCognition user guide 4: concepts and methods. Definiens Imaging, Munich, Germany

  • Ehlers M, Klonus S, Johan Åstrand P, Rosso P (2010) Multi-sensor image fusion for pansharpening in remote sensing. Int J Image Data Fusion 1(1):25–45. doi:10.1080/19479830903561985

    Article  Google Scholar 

  • Erikson M (2004) Species classification of individually segmented tree crowns in high-resolution aerial images using radiometric and morphologic image measures. Remote Sens Environ 91(3–4):469–477. doi:10.1016/j.rse.2004.04.006

    Article  Google Scholar 

  • Erikson M, Olofsson K (2005) Comparison of three individual tree crown detection methods. Mach Vis Appl 16(4):258–265. doi:10.1007/s00138-005-0180-y

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2010 country report: Nepal. Rome

  • Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arets EJMM, Berry NJ, Bird M, Brondizio ES, de Camargo P, Chave J, Djagbletey G, Domingues TF, Drescher M, Fearnside PM, França MB, Fyllas NM, Lopez-Gonzalez G, Hladik A, Higuchi N, Hunter MO, Iida Y, Abu Silam K, Kassim AR, Keller M, Kemp J, King DA, Lovett JC, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Metcalfe DJ, Mitchard ETA, Moran EF, Nelson BW, Nilus R, Nogueira EM, Palace M, Patiño S, Peh KSH, Raventos MT, Reitsma JM, Saiz G, Schrodt F, Sonké B, Taedoumg HE, Tan S, White L, Wöll H, Lloyd J (2010) Height-diameter allometry of tropical forest trees. Biogeosci Discuss 7(5):7727–7793. doi:10.5194/bgd-7-7727-2010

    Article  Google Scholar 

  • Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85:463–474

    Article  Google Scholar 

  • Franklin J, Hiernaux PYH (1991) Estimating foliage and woody biomass in Sahelian and Sudanian woodlands using a remote sensing model. Int J Remote Sens 12:1387–1404

    Article  Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2(4):045023. doi:10.1088/1748-9326/2/4/045023

    Article  Google Scholar 

  • Gonzalez P, Asner GP, Battles JJ, Lefsky MA, Waring KM, Palace M (2010) Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sens Environ 114(7):1561–1575. doi:10.1016/j.rse.2010.02.011

    Article  Google Scholar 

  • Gougeon F (1995) A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Can J Remote Sens 21:274

    Google Scholar 

  • Gougeon F, Leckie DG (2006) The individual tree crown approach applied to Ikonos images of a coniferous plantation area. Photogramm Eng Remote Sens 72:1287–1297

    Article  Google Scholar 

  • Hájek F (2006) Object-oriented classification of Ikonos satellite data for the identification of tree species composition. J For Sci 52(4):181–187

    Google Scholar 

  • Hay GJ, Castilla G, Wulder MA, Ruiz JR (2005) An automated object-based approach for the multiscale image segmentation of forest scenes. Int J Appl Earth Obs Geoinform 7(4):339–359. doi:10.1016/j.jag.2005.06.005

    Article  Google Scholar 

  • Hemery GE, Savill PS, Pryor SN (2005) Applications of the crown diameter–stem diameter relationship for different species of broadleaved trees. For Ecol Manag 215(1–3):285–294. doi:10.1016/j.foreco.2005.05.016

    Article  Google Scholar 

  • Hirata Y, Tsubota Y, Sakai A (2009) Allometric models of DBH and crown area derived from QuickBird panchromatic data in Cryptomeria japonica and Chamaecyparis obtusa stands. Int J Remote Sens 30(19):5071–5088. doi:10.1080/01431160903022977

    Article  Google Scholar 

  • Husch B, Beers TW, Kershaw JA (2003) Forest mensuration. Wiley & Sons, Hoboken

    Google Scholar 

  • IPCC (2003) Good practice guidance for land use, land-use change and forestry, IPCCC National Greenhouse Gas Inventories Programme. Institute for Global Environment Strategies, Kanagawa

    Google Scholar 

  • IPCC (2007) Summary for policy makers. In: Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Cambridge, United Kingdom and New York, NY, USA

  • Kajisa T, Murakami T, Mizoue N, Top N, Yoshida S (2009) Object-based forest biomass estimation using Landsat ETM + in Kampong Thom Province, Cambodia. J For Res 14(4):203–211. doi:10.1007/s10310-009-0125-9

    Article  Google Scholar 

  • Katoh M, Gougeon FA (2012) Improving the precision of tree counting by combining tree detection with crown delineation and classification on homogeneity guided smoothed high resolution (50 cm) multispectral rirborne digital data. Remote Sens 4(5):1411–1424. doi:10.3390/rs4051411

    Article  Google Scholar 

  • Katoh M, Gougeon FA, Leckie DG (2008) Application of high-resolution airborne data using individual tree crowns in Japanese conifer plantations. J For Res 14(1):10–19. doi:10.1007/s10310-008-0102-8

    Article  Google Scholar 

  • Katoh M, Gougeon FA, Leckie DG (2009) Application of high-resolution airborne data using individual tree crowns in Japanese conifer plantations. J For Res 14:10–19

    Article  Google Scholar 

  • Ke Y, Quackenbush L (2008) Comparison of individual tree crown detection and delineation methods. In: ASPRS Annual conference "Bridging the Horizons: New Frontiers in Geospatial Collaboration", Portland, Oregon, US, ASPRS

  • Ke Y, Quackenbush LJ (2011a) A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int J Remote Sens 32(17):4725–4747. doi:10.1080/01431161.2010.494184

    Article  Google Scholar 

  • Ke Y, Quackenbush LJ (2011b) A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery. Int J Remote Sens 32(13):3625–3647. doi:10.1080/01431161003762355

    Article  Google Scholar 

  • Ke Y, Quackenbush LJ, Im J (2010) Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sens Environ 114(6):1141–1154. doi:10.1016/j.rse.2010.01.002

    Article  Google Scholar 

  • Kim M, Madden M, Warner TA (2009) Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: segmentation quality and image classification issues. Photogramm Eng Remote Sens 75(7):819–829

    Article  Google Scholar 

  • Kurz WA, Apps MJ, Banfield E, Stinson G (2002) Forest carbon accounting at the operational scale. For Chron 78(5):672–679

    Article  Google Scholar 

  • Leboeuf A, Beaudoin A, Fournier R, Guindon L, Luther J, Lambert M (2007) A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery. Remote Sens Environ 110(4):488–500. doi:10.1016/j.rse.2006.05.025

    Article  Google Scholar 

  • Leckie DG, Gougeon FA, Walsworth N, Paradine D (2003) Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sens Environ 85(3):355–369. doi:10.1016/S0034-4257(03)00013-0

    Article  Google Scholar 

  • Leckie DG, Gougeon FA, Tinis S, Nelson T, Burnett CN, Paradine D (2005) Automated tree recognition in old growth conifer stands with high resolution digital imagery. Remote Sens Environ 94(3):311–326

    Article  Google Scholar 

  • Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEF) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag 188:211–224

    Article  Google Scholar 

  • Lévesque J, King DJ (2003) Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health. Remote Sens Environ 84(4):589–602

    Article  Google Scholar 

  • Lu D (2005) Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int J Remote Sens 26:2509–2525

    Article  Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing based biomass estimation. Int J Remote Sens 27(7):1297–1328. doi:10.1080/01431160500486732

    Article  Google Scholar 

  • MacDicken K (1997) A guide to monitoring carbon storage in forestry and agroforestry projects. Winrock international institute for agriculture development, Arlington

    Google Scholar 

  • Möller M, Lymburner L, Volk M (2007) The comparison index: a tool for assessing the accuracy of image segmentation. Int J Appl Earth Obs Geoinform 9:311–321

    Article  Google Scholar 

  • Mora B, Wulder MA, White JC (2010) Segment-constrained regression tree estimation of forest stand height from very high spatial resolution panchromatic imagery over a boreal environment. Remote Sensing of Environment In Press, Corrected Proof. doi:10.1016/j.rse.2010.05.022

  • Nelson R, Krabill W, Tonelli J (1988) Estimating forest biomass and volume using airborne laser data. Remote Sens Environ 24:247–267

    Article  Google Scholar 

  • Niraula RR, Gilani H, Pokharel BK, Qamer FM (2013) Measuring impacts of community forestry program through repeat photography and satellite remote sensing in the Dolakha district of Nepal. J Environ Manag 126:20–29. doi:10.1016/j.jenvman.2013.04.006

    Article  Google Scholar 

  • Olofsson K, Wallerman J, Holmgren J, Olsson H (2006) Tree species discrimination using Z/I DMC imagery and template matching of single trees. Scand J For Res 21:106–110. doi:10.1080/14004080500486955

    Article  Google Scholar 

  • Platt RV, Schoennagel T (2009) An object-oriented approach to assessing changes in tree cover in the Colorado Front Range 1938–1999. For Ecol Manag 258(7):1342–1349. doi:10.1016/j.foreco.2009.06.039

    Article  Google Scholar 

  • Pu R, Landry S (2012) A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens Environ 124:516–533. doi:10.1016/j.rse.2012.06.011

    Article  Google Scholar 

  • Rosenqvist A, Milne A, Lucas R, Imhoff M, Dobson C (2003) A review of remote sensing technology in support of the Kyoto Protocol. Environ Sci Policy 6(4):4155

    Google Scholar 

  • Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci 43:424–434

    Google Scholar 

  • Shimano K (1997) Analysis of the relationship between DBH and crown projection area using a new model. J For Res 2(4):237–242. doi:10.1007/bf02348322

    Article  Google Scholar 

  • Steininger MK (2000) Satellite estimation of tropical secondary forest aboveground biomass data from Brazil and Bolivia. Int J Remote Sens 21(6):1139–1157

    Article  Google Scholar 

  • Sugumaran R, Pavuluri MK, Zerr D (2003) The use of high-resolution imagery for identification of urban climax forest species using traditional and rule-based classification approach. Geosci Remote Sens IEEE Trans 41(9):1933–1939

    Article  Google Scholar 

  • Wang L, Gong P, Biging G (2004) Individual tree crown delineation and treetop detection in high spatial resolution aerial imagery. Photogramm Eng Remote Sens 70(3):351–357

    Article  Google Scholar 

  • Zheng D, Rademacher J, Chen J, Crow T, Bresee M, Le M, Rku S (2004) Estimating aboveground biomass using Landsat 7 ETM+ data across a Biomass estimation managed landscape in northern Wisconsin. U S A Remote Sens Environ 93:402–411

    Article  Google Scholar 

Download references

Acknowledgments

This study is an elaboration of the MSc thesis. The authors are grateful for the support received from the Netherlands Fellowship Program (NFP) for having sponsored the study costs. Special thanks to the International Centre for Integrated Mountain Development (ICIMOD) for their support during the data collection period in Nepal. Finally, we would like to express our special thanks to Dr. Bhaskar Karky, Eak Bhadur Rana, Govinda Joshi, and Seema Karki for providing support and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hammad Gilani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussin, Y.A., Gilani, H., van Leeuwen, L. et al. Evaluation of object-based image analysis techniques on very high-resolution satellite image for biomass estimation in a watershed of hilly forest of Nepal. Appl Geomat 6, 59–68 (2014). https://doi.org/10.1007/s12518-014-0126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-014-0126-z

Keywords

Navigation