Skip to main content
Log in

Adaptive hybrid High-Order terminal sliding mode control of MIMO uncertain nonlinear systems and its application to robot manipulators

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper proposes an adaptive hybrid high-order terminal sliding mode (HHOTSM) control approach for a class of high-order multiple-input and multiple-output (MIMO) uncertain nonlinear systems and its application to robotic manipulators. The techniques of the terminal sliding mode (TSM) control and a type of traditional sliding mode control (SMC) are combined to establish the HHOTSM controller, in which the first-order sliding mode term is designed based on the TSM, while the high-order sliding mode term is defined based on the idea of the high-order sliding mode approach. Thus, the proposed method offers a valuable elimination of the singularity problem encountered in traditional TSM control, as well as the reaching phase problem. It is guaranteed that the tracking errors will converge to zero in some finite time that can be set arbitrarily, and the actual control input signal is smooth and free of chattering effects. Furthermore, an adaptive tuning law is incorporated to reject the effects of unknown system uncertainties. The convergence and stability of the proposed method are verified by the Lyapunov stability theory. Simulation results of a robot manipulator are presented to demonstrate the effectiveness and applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SMC:

Sliding Mode Control

TSM:

Terminal Sliding Mode Control

VSS:

Variable Structure System

HOSMC:

High-Order Sliding Mode Control

HHOTSM:

Hybrid High-Order Terminal Sliding Mode

AHHOTSM:

Adaptive HHOTSM

SISO:

Single-Input and Single-Output

MIMO:

Multiple-Input and Multiple-Output

T c :

Convergence time

T f :

Total running time

N c :

Total sampling instant in interval time [Tc, Tf]

N f :

Total sampling instant in interval time [0, Tf]

MAET c :

Mean-Absolute-Error in interval time [Tc, Tf]

ITAE :

Integral of Time multiply Absolute Error

TV :

Total Variation

N2 :

Consumption of Energy

References

  1. Slotine, J. J. E. and Li, W., “On the Adaptive Control of Robot Manipulators,” The International Journal of Robotics Research, Vol. 6, No. 3, pp. 49–59, 1987.

    Article  Google Scholar 

  2. Zhang, F., Dawson, D. M., de Queiroz, M. S., and Dixon, W. E., “Global Adaptive Output Feedback Tracking Control of Robot Manipulators,” IEEE Transactions on Automatic Control, Vol. 45, No. 6, pp. 1203–1208, 2000.

    Article  MATH  Google Scholar 

  3. Spong, M. W., “On the Robust Control of Robot Manipulators,” IEEE Transactions on Automatic Control, Vol. 37, No. 11, pp. 1782–1786, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  4. Lewis, F. L., Dawson, D. M., and Abdallah, C. T., “Robot Manipulator Control: Theory and Practice,” New York: Marcel Dekker, 2nd Ed., pp. 263–328, 2003.

    Google Scholar 

  5. Lewis, F. L., “Neural Network Control of Robot Manipulators,” IEEE Intelligent Systems, Vol. 11, No. 3, pp. 64–75, 1996.

    Google Scholar 

  6. Er, M. J. and Gao, Y., “Robust Adaptive Control of Robot Manipulators using Generalized Fuzzy Neural Networks,” IEEE Transactions on Industrial Electronics, Vol. 50, No. 3, pp. 620–628, 2003.

    Article  Google Scholar 

  7. Slotine, J. J. and Sastry, S. S., “Tracking Control of Non-Linear Systems using Sliding Surfaces, with Application to Robot Manipulators,” International Journal of Control, Vol. 38, No. 2, pp. 465–492, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhihong, M., Paplinski, A. P., and Wu, H. R., “A Robust Mimo Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators,” IEEE Transactions on Automatic Control, Vol. 39, No. 12, pp. 2464–2469, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. Parlakçi, M. A., Jafarov, E. M., and Istefanopoulos, Y., “New Variable Structure PD-Controllers Design for Robot Manipulators with Parameter Perturbations,” International Journal of Robotics and Automation, Vol. 19, No. 3, pp. 134–142, 2004.

    Google Scholar 

  10. Jafarov, E. M., Parlakçi, M. A., and Istefanopulos, Y., “A New Variable Structure PID-Controller Design for Robot Manipulators,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 1, pp. 122–130, 2005.

    Article  Google Scholar 

  11. Capisani, L. M., Ferrara, A., and Magnani, L., “Design and Experimental Validation of a Second-Order Sliding-Mode Motion Controller for Robot Manipulators,” International Journal of Control, Vol. 82, No. 2, pp. 365–377, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  12. Jin, M., Lee, J., Chang, P. H., and Choi, C., “Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, pp. 3593–3601, 2009.

    Article  Google Scholar 

  13. Liu, J. and Sun, F., “A Novel Dynamic Terminal Sliding Mode Control of Uncertain Nonlinear Systems,” Journal of Control Theory and Applications, Vol. 5, No. 2, pp. 189–193, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  14. abanoviç, A., “Variable Structure Systems with Sliding Modes in Motion Control-A Survey,” IEEE Transactions on Industrial Informatics, Vol. 7, No. 2, pp. 212–223, 2011.

    Article  Google Scholar 

  15. Pisano, A. and Usai, E., “Sliding Mode Control: A Survey with Applications in Math,” Mathematics and Computers in Simulation, Vol. 81, No. 5, pp. 954–979, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  16. Utkin, V. I., Guldner, J., and Shijun, M., “Sliding Mode Control in Electro-Mechanical Systems,” CRC press, pp. 171–319, 1999.

    Google Scholar 

  17. Jafarov, E. M. and Tasaltin, R., “Robust Sliding-Mode Control for the Uncertain Mimo Aircraft Model F-18,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 4, pp. 1127–1141, 2000.

    Article  Google Scholar 

  18. Benallegue, A., Mokhtari, A., and Fridman, L., “High Order Sliding Mode Observer for a Quadrotor UAV,” International Journal of Robust and Nonlinear Control, Vol. 18, No. 45, pp. 427–440, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  19. Bartolini, G., Pisano, A., Punta, E., and Usai, E., “A Survey of Applications of Second-Order Sliding Mode Control to Mechanical Systems,” International Journal of Control, Vol. 76, No. 9–10, pp. 875–892, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  20. Utkim, V., “Variable Structure Systems with Sliding Modes,” IEEE Transactions on Automatic Control, Vol. 22, No. 2, pp. 212–222, 1977.

    Article  Google Scholar 

  21. Hung, J. Y., Gao, W., and Hung, J. C., “Variable Structure Control: A Survey,” IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, pp. 2–22, 1993.

    Article  Google Scholar 

  22. Venkataraman, S, and Gulati, S., “Control of Nonlinear Systems Using Terminal Sliding Modes,” Journal of Dynamic Systems, Measurement, and Control, Vol. 115, No. 3, pp. 554–560, 1993.

    Article  MATH  Google Scholar 

  23. Zhihong, M. and Yu, X. H., “Terminal Sliding Mode Control of MIMO Linear Systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 44, No. 11, pp. 1065–1070, 1997.

    Article  MathSciNet  Google Scholar 

  24. Wu, Y., Yu, X., and Man, Z., “Terminal Sliding Mode Control Design for Uncertain Dynamic Systems,” Systems & Control Letters, Vol. 34, No. 5, pp. 281–287, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  25. Feng, Y., Zheng, J., Yu, X., and Truong, N. V., “Hybrid Terminal Sliding-Mode Observer Design Method for a Permanent-Magnet Synchronous Motor Control System,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, pp. 3424–3431, 2009.

    Article  Google Scholar 

  26. Chang, E. C., Liang, T. J., Chen, J. F., and Chang, F. J., “Real-Time Implementation of Grey Fuzzy Terminal Sliding Mode Control for PWM DC-AC Converters,” IET Power Electronics, Vol. 1, No. 2, pp. 235–244, 2008.

    Article  Google Scholar 

  27. Hui, L. and Li, J., “Terminal Sliding Mode Control for Spacecraft Formation Flying,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 3, pp. 835–846, 2009.

    Article  Google Scholar 

  28. Tan, C. P., Yu, X., and Man, Z., “Terminal Sliding Mode Observers for a Class of Nonlinear Systems,” Automatica, Vol. 46, No. 8, pp. 1401–1404, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  29. Levant, A., “Principles of 2-Sliding Mode Design,” Automatica, Vol. 43, No. 4, pp. 576–586, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  30. Polyakov, A. and Poznyak, A., “Reaching Time Estimation for “Super-Twisting” Second Order Sliding Mode Controller Via Lyapunov Function Designing,” IEEE Transactions on Automatic Control, Vol. 54, No. 8, pp. 1951–1955, 2009.

    Article  MathSciNet  Google Scholar 

  31. Defoort, M., Nollet, F., Floquet, T., and Perruquetti, W., “A Third- Order Sliding-Mode Controller for a Stepper Motor,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, pp. 3337–3346, 2009.

    Article  Google Scholar 

  32. Yu, X. H. and Zhihong, M., “Fast Terminal Sliding-Mode Control Design for Nonlinear Dynamical Systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 2, pp. 261–264, 2002.

    Article  MathSciNet  Google Scholar 

  33. Feng, Y., Yu, X., and Man, Z., “Non-Singular Terminal Sliding Mode Control of Rigid Manipulators,” Automatica, Vol. 38, No. 12, pp. 2159–2167, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  34. Yang, L. and Yang, J., “Nonsingular Fast Terminal Sliding Mode Control for Nonlinear Dynamical Systems,” International Journal of Robust and Nonlinear Control, Vol. 21, No. 16, pp. 1865–1879, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  35. Chen, M., Wu, Q. X., and Cui, R. X., “Terminal Sliding Mode Tracking Control for a Class of SISO Uncertain Nonlinear Systems,” ISA transactions, Vol. 52, No. 2, pp. 198–206, 2013.

    Article  Google Scholar 

  36. Park, K. B. and Tsuji, T., “Terminal Sliding Mode Control of Second Order Nonlinear Uncertain Systems,” International Journal of Robust and Nonlinear Control, Vol. 9, No. 11, pp. 769–780, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  37. Perruquetti, W. and Barbot, J. P., “Sliding Mode Control in Engineering,” CRC Press, pp. 88–136, 2002.

    Google Scholar 

  38. Furuta, K. and Pan, Y., “Variable Structure Control with Sliding Sector,” Automatica, Vol. 36, No. 2, pp. 211–228, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  39. Bartolini, G., Ferrara, A., and Usani, E., “Chattering Avoidance by Second-Order Sliding Mode Control,” IEEE Transactions on Automatic control, Vol. 43, No. 2, pp. 241–246, 1998.

    Article  MATH  Google Scholar 

  40. Roopaei, M. and Zolghadri Jahromi, M., “Chattering-Free Fuzzy Sliding Mode Control in MIMO Uncertain Systems,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 71, No. 10, pp. 4430–4437, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  41. Slotine, J. J. E. and Li, W., “Applied Nonlinear Control,” Prentice-Hall Englewood Cliffs, pp. 41–190, 1991.

    Google Scholar 

  42. Khalil, H. K. and Grizzle, J., “Nonlinear Systems,” Prentice Hall Upper Saddle River, pp. 35–194, 2002.

    Google Scholar 

  43. Yoo, B. K. and Ham, W. C., “Adaptive Control of Robot Manipulator using Fuzzy Compensator,” IEEE Transactions on Fuzzy Systems, Vol. 8, No. 2, pp. 186–199, 2000.

    Article  Google Scholar 

  44. Yu, S., Yu, X., Shirinzadeh, B., and Man, Z., “Continuous Finite- Time Control for Robotic Manipulators with Terminal Sliding Mode,” Automatica, Vol. 41, No. 11, pp. 1957–1964, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  45. Mondal, S. and Mahanta, C., “Adaptive Second Order Terminal Sliding Mode Controller for Robotic Manipulators,” Journal of the Franklin Institute, Vol. 351, No. 4, pp. 2356–2377, 2014.

    Article  MathSciNet  Google Scholar 

  46. Skogestad, S., “Simple Analytic Rules for Model Reduction and PID Controller Tuning,” Journal of Process Control, Vol. 13, No. 4, pp. 291–309, 2003.

    Article  MathSciNet  Google Scholar 

  47. Li, T. H. S. and Huang, Y. C., “Mimo Adaptive Fuzzy Terminal Sliding-Mode Controller for Robotic Manipulators,” Information Sciences, Vol. 180, No. 23, pp. 4641–4660, 2010.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, XT., Kang, HJ. Adaptive hybrid High-Order terminal sliding mode control of MIMO uncertain nonlinear systems and its application to robot manipulators. Int. J. Precis. Eng. Manuf. 16, 255–266 (2015). https://doi.org/10.1007/s12541-015-0034-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0034-0

Keywords

Navigation