Skip to main content
Log in

High-speed atomic force microscopy and its future prospects

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Various techniques have been developed and used to investigate how proteins produce complex biological architectures and phenomena. Among these techniques, high-speed atomic force microscopy (HS-AFM) holds a unique position. It is only HS-AFM that allows the simultaneous assessment of structure and dynamics of single protein molecules in action. This new microscopy tool has been successfully applied to a variety of proteins, from motor proteins to membrane proteins, antibodies, enzymes, and even to intrinsically disordered proteins. And yet there still remain many biomolecular phenomena that cannot be addressed by HS-AFM in its current form. Here, I present a brief history of HS-AFM development, describe the current state of HS-AFM, and then discuss which new biological scanning probe microscopy techniques will be coming up next.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ando T (2017a) Directly watching biomolecules in action by high-speed atomic force microscopy. Biophys Rev 9:421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando T (2017b) Technical development of high-speed AFM and its future prospects. Oyo Butsuri 86:867–874

    Google Scholar 

  • Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98:12468–12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437

    Article  CAS  Google Scholar 

  • Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114:3120–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezanilla M, Drake B, Nudler E, Kashlev M, Hansma PK, Hansma HG (1994) Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys J 67:2454–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  CAS  PubMed  Google Scholar 

  • Colom A, Casuso I, Boudier T, Scheuring S (2012) High-speed atomic force microscopy: cooperative adhesion and dynamic equilibrium of junctional microdomain membrane proteins. J Mol Biol 423:249–256

    Article  CAS  PubMed  Google Scholar 

  • Colom A, Casuso I, Rico F, Scheuring S (2013) A hybrid high-speed atomic force–optical microscope for visualizing single membrane proteins on eukaryotic cells. Nat Commun 4:2155 (8 pp)

    Article  PubMed  Google Scholar 

  • Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243:1586–1589

    Article  CAS  PubMed  Google Scholar 

  • Dufrene YF, Evans E, Engel A, Helenius J, Gaub HE, Müller DJ (2011) Five challenges to bringing single-molecule force spectroscopy into the living cell. Nat Methods 8:123–127

    Article  CAS  PubMed  Google Scholar 

  • Düttmann M, Togashi Y, Yanagida T, Mikhailov AS (2012) Myosin-V as a mechanical sensor: an elastic network study. Biophys J 102:542–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggeling C, Willig KI, Sahl SJ, Hell SW (2015) Lens-based fluorescence nanoscopy. Q Rev Biophys 48:178–243

    Article  CAS  PubMed  Google Scholar 

  • Erie DA, Yang G, Schultz HC, Bustamante C (1994) DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science 266:1562–1566

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Uchihashi T, Iino R, Okazaki Y, Yoshida M, Igarashi K, Ando T (2013) High-speed atomic force microscope combined with single-molecule fluorescence microscope. Rev Sci Instrum 84:073706

    Article  PubMed  Google Scholar 

  • Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli LR, Allen FI, Shnyrova AV, Cho KR, Munoz D, Wang YM, Grigoropoulos CP, Ajo-Franklin CM, Frolov VA, Noy A (2014) Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514:612–615

    Article  CAS  PubMed  Google Scholar 

  • Guillaume-Gentil O, Potthoff E, Ossola D, Franz CM, Zambelli T, Vorholt JA (2014) Force-controlled manipulation of single cells: from AFM to FluidFM. Trend Biotechnol 32:381–388

    Article  CAS  Google Scholar 

  • Häberle W, Höber JKH, Ohnesorge F, Smith DPE, Binnig G (1992) In situ investigations of single living cells infected by viruses. Ultramicroscopy 42–44:1161–1167

    Article  Google Scholar 

  • Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) The scanning ion-conductance microscope. Science 243:641–643

    Article  CAS  PubMed  Google Scholar 

  • Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW (2000) Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J Chem Phys 112:7761–7774

    Article  CAS  Google Scholar 

  • Kasas S, Thomson NH, Smith BL, Hansma HG, Zhu X, Guthold M, Bustamante C, Kool ET, Kashlev M, Hansma PK (1997) Escherichia Coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36:461–468

    Article  CAS  PubMed  Google Scholar 

  • Kodera N, Sakashita M, Ando T (2006) Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev Sci Instrum 77:083704 (7 pp)

    Article  Google Scholar 

  • Kodera N, Yamashita H, Ando T (2005) Active damping of the scanner for high-speed atomic force microscopy. Rev Sci Instrum 76:053708 (5 pp)

    Article  Google Scholar 

  • Lin JN, Drake B, Lea AS, Hansma PK, Andrade JD (1990) Direct observation of immunoglobulin adsorption dynamics using the atomic force microscope. Langmuir 6:509–511

    Article  CAS  Google Scholar 

  • Lopez CF, Nielsen SO, Moore PB, Klein ML (2004) Understanding nature's design for a nanosyringe. Proc Natl Acad Sci USA 101:4431–4434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53:1045–1047

    Article  Google Scholar 

  • Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K, Hirose S, Morikawa K, Ando T (2008) Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chem Phys Chem 9:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Obataya I, Nakamura C, Han SW, Nakamura N, Miyake J (2005) Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens Bioelectron 20:1652–1655

    Article  CAS  PubMed  Google Scholar 

  • Oestreicher Z, Taoka A, Fukumori Y (2015) A comparison of the surface nanostructure from two different types of gram-negative cells: Escherichia coli and Rhodobacter sphaeroides. Micron 72:8–14

    Article  PubMed  Google Scholar 

  • Rief M, Oesterhelt F, Heymann B, Gaub H (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama Y, Mazur A, Kapinos LE, Lim RYH (2016) Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nat Nanotechnol 11:719–723

    Article  CAS  PubMed  Google Scholar 

  • Schabert FA, Engel A (1994) Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy. Biophys J 67:2394–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevchuk AI, Frolenkov GI, Sanchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE (2006) Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew Chem Int Ed Engl 45:2212–2216

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Uchihashi T, Ando T, Yasuda R (2015) Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. Sci Rep 5:8724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanii B, Ashby PD (2010) High-sensitivity deflection detection of nanowires. Phys Rev Lett 104:147203

    Article  PubMed  Google Scholar 

  • Togashi Y, Mikhailov AS (2007) Nonlinear relaxation dynamics in elastic networks and design principles of molecular machines. Proc Natl Acad Sci USA 104:8697–8702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchihashi T, Ando T, Yamashita H (2006) Fast phase imaging in liquids using a rapid scan atomic force microscope. Appl Phys Lett 89:213112 (3 pp)

    Article  Google Scholar 

  • Uchihashi T, Iino R, Ando T, Noji H (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755–758

    Article  CAS  PubMed  Google Scholar 

  • Viani MB, Schäffer TE, Paloczi GT, Pietrasanta LI, Smith BL, Thompson JB, Richter M, Rief M, Gaub HE, Plaxco KW, Cleland AN, Hansma HG, Hansma PK (1999) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev Sci Instrum 70:4300–4303

    Article  CAS  Google Scholar 

  • Viani MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG, Hansma PK (2000) Probing protein–protein interactions in real time. Nat Struct Biol 7:644–647

    Article  CAS  PubMed  Google Scholar 

  • Wang RY-R, Kudryashev M, Li X, Egelman EH, Basler M, Cheng Y, Baker D, DiMaio F (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods 12:335–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y (2012) Single molecule imaging on living bacterial cell surface by high-speed AFM. J Mol Biol 422:300–309

    Article  CAS  PubMed  Google Scholar 

  • Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/scilica fiber surfaces studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JST/CREST (#JPMJCR13M1) and KAKENHI from the Ministry of Education, Culture, Sports, Science and Technology, Japan (#21113002, #24227005 and #26119003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Ando.

Ethics declarations

Conflicts of interest

Toshio Ando declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

This article is part of a Special Issue on ‘Biomolecules to Bio-nanomachines—Fumio Arisaka 70th Birthday’ edited by Damien Hall, Junichi Takagi and Haruki Nakamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, T. High-speed atomic force microscopy and its future prospects. Biophys Rev 10, 285–292 (2018). https://doi.org/10.1007/s12551-017-0356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0356-5

Keywords

Navigation