Skip to main content
Log in

2.5-D DC resistivity modeling considering flexibility and accuracy

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

We highlighted the flexibility of using unstructured mesh together with the local refinement by a resistivity model with complicated topography. The effect of topography is emphasized. Based on this, we calculated a specific class of layered models and found that the accuracy is not always satisfactory by utilizing the standard approach. As an improvement, we employed the layered earth as the reference model to calculate the wavenumbers. The comparison demonstrates that the accuracy is considerably improved by using this enhanced approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Coggon, J. H., 1971. Electromagnetic and Electrical Modeling by the Finite Element Method. Geophysics, 36(1): 132–155

    Article  Google Scholar 

  • Dey, A., Morrison, H. F., 1979. Resistivity Modelling for Arbitrarily Shaped Two-Dimensional Structures. Geophysical Prospecting, 27(1): 106–136

    Article  Google Scholar 

  • Erdogan, E., Demirci, I., Candansayar, M. E., 2008. Incorporating Topography into 2D Resistivity Modeling Using Finite-Element and Finite-Difference Approaches. Geophysics, 73(3): F135–F142

    Article  Google Scholar 

  • Fox, R. C., Hohmann, G. W., Killpack, T. J., et al., 1980. Topographic Effects in Resistivity and Induced-Polarization Surveys. Geophysics, 45(1): 75–93

    Article  Google Scholar 

  • Frey, P. J., 2001. MEDIT—An Interactive Mesh Visualization Software. INRIA Technical Report 0253. http://www-rocq.inria.fr/gamma/medit/medit.html. Accessed November 26, 2007

  • Hvozdara, M., Kaikkonen, P., 1996. The Boundary Integral Solution of a DC Geoelectric Problem for a 2-D Body Embedded in a Two-Layered Earth. Journal of Applied Geophysics, 34(3): 169–186

    Article  Google Scholar 

  • Lesur, V., Cuer, M., Straub, A., 1999. 2-D and 3-D Interpretation of Electrical Tomography Measurements, Part 1: The Forward Problem. Geophysics, 64(2): 386–395

    Article  Google Scholar 

  • Li, J. M., 2005. Geoelectric Field and Electric Prospecting. Geological Publishing House, Beijing. 473 (in Chinese)

    Google Scholar 

  • Li, Y. G., Spitzer, K., 2002. Three-Dimensional DC Resistivity Forward Modelling Using Finite Elements in Comparison with Finite-Difference Solutions. Geophysical Journal International, 151(3): 924–934

    Article  Google Scholar 

  • Mufti, I. R., 1976. Finite-Difference Resistivity Modeling for Arbitrarily Shaped Two-Dimensional Structures. Geophysics, 41(1): 62–78

    Article  Google Scholar 

  • Mundry, E., 1984. Geoelectrical Model Calculations for Two-Dimensional Resistivity Distributions. Geophysical Prospecting, 32(1): 124–131

    Article  Google Scholar 

  • Pidlisecky, A., Knight, R., 2008. FW2_5D: A MATLAB 2.5-D Electrical Resistivity Modeling Code. Computers & Geosciences, 34(12): 1645–1654

    Article  Google Scholar 

  • Ruan, B. Y., 2001. 2-D Electrical Modeling due to a Current Point by FEM with Variation of Conductivity within Each Triangular Element. Guangxi Sciences, 8(1): 1–3 (in Chinese with English Abstract)

    Google Scholar 

  • Scalicky, T., 1996. LASPack Reference Manual. http://www.netlib.org. Accessed September 9, 2007

  • Shewchuk, J. R., 1996. Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. WACG, 1st Workshop on Applied Computational Geometry. 124–133. http://www.cs.cmu.edu/~quake/triangle.html. Accessed March 12, 2007

  • Snyder, D. D., 1976. A Method for Modeling the Resistivity and IP Response of Two-Dimensional Bodies. Geophysics, 41(5): 997–1015

    Article  Google Scholar 

  • Tang, J. T., Wang, F. Y., 2008. 2.5-D Direct Current Resistivity Simulation Based on the Unstructured Mesh. Computing Techniques for Geophysical and Geochemical Exploration, 30(5): 413–418 (in Chinese)

    Google Scholar 

  • Tang, J. T., Wang, F. Y., Ren Z. Y., 2010. 2.5-D DC Resistivity Modeling by Adaptive Finite-Element Method with Unstructured Triangulation. Chinese J. Geophys., 53(3): 708–716 (in Chinese with English Abstract)

    Google Scholar 

  • Tsourlos, P. I., Szymanski, J. E., Tsokas, G. N., 1999. The Effect of Terrain Topography on Commonly Used Resistivity Arrays. Geophysics, 64(5): 1357–1363

    Article  Google Scholar 

  • Xiong, B., Ruan, B. Y., 2002. A Numerical Simulation of 2-D Geoelectric Section with Biquadratic Change of Potential for Resistivity Sounding by the Finite Element Method. Chinese Journal of Geophysics, 45(2): 285–295 (in Chinese)

    Google Scholar 

  • Xu, S. Z., Duan, B. C., Zhang, D. H., 2000. Selection of the Wavenumbers K Using an Optimization Method for the Inverse Fourier Transform in 2.5D Electrical Modeling. Geophysical Prospecting, 48(5): 789–796

    Article  Google Scholar 

  • Xu, S. Z., Zhao, S. K., Ni, Y., 1998. A Boundary Element Method for 2-D DC Resistivity Modeling with a Point Current Source. Geophysics, 63(2): 399–404

    Article  Google Scholar 

  • Zienkiewicz, O. C., Taylor, R. L., 2000. The Finite Element Method, Volume I: The Basic. Fifth Edition. Butterworth-Heinemann, Woburn, MA. 347

    Google Scholar 

  • Zienkiewicz, O. C., Zhu, J. Z., 1992a. The Superconvergent Patch Recovery and a Posteriori Error Estimates. Part 1: the Tecovery Technique. International Journal for Numerical Methods in Engineering, 33(7): 1331–1364

    Article  Google Scholar 

  • Zienkiewicz, O. C., Zhu, J. Z., 1992b. The Superconvergent Patch Recovery and a Posteriori Error Estimates. Part 2: Error Estimates and Adaptivity. International Journal for Numerical Methods in Engineering, 33(7): 1365–1382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiyan Wang  (王飞燕).

Additional information

This study was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2007AA06Z134), and the National Natural Science Fundation of China (No. 40874072).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Wang, F., Xiao, X. et al. 2.5-D DC resistivity modeling considering flexibility and accuracy. J. Earth Sci. 22, 124–130 (2011). https://doi.org/10.1007/s12583-011-0163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-011-0163-z

Key Words

Navigation