Skip to main content
Log in

Runoff variation law and its response to climate change in the headstream area of the Keriya River basin, Xinjiang

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Based on the runoff and meteorological data of Langan (兰干) Hydrological Station from 1957 to 2009 in Keriya (克里雅) River, the periodicities, abrupt changes, and trends of climate factors and runoff were investigated by wavelet analysis and nonparametric test; then, the future change of the annual runoff was predicted by a periodic trend superposition model. In succession, the influencing volumes of climate change on the annual runoff were separated from the observation values of the annual runoff in Keriya River. The results show that (1) temperature series increased significantly, while the annual runoff and precipitation of Keriya River increased insignificantly at the significant level of α=0.05; (2) the common periods of 9 and 15 years existed in the annual runoff evolution process, and the primary periods of temperature and precipitation were 9 and 22 years and 9 and 13 years, respectively; (3) the annual runoff did not vary simultaneously with the abrupt change of climate factors in the headstream; the abrupt points of annual runoff and temperature are at 1998 and 1980 year, and that of precipitation is not so significant; and (4) the annual runoff will experience a decrease trend in the future period; the total increasing volume owing to climate change is 23.154×108 m3 in the headstream during the period of 1999–2009; however, the stream flow has been nearly utilized completely due to the human activities in the mainstream area of Keriya River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Chen, R., Deng, X. Z., Zhan, J. Y., et al., 2005. Estimation Model and Application of the Amount of Eco-Water Demand: A Case Study on Keriya River Basin. Geographical Research, 24(5): 725–731 (in Chinese with English Abstract)

    Google Scholar 

  • Chen, Y. N., Kuniyoshi, T., Xu, C. C., et al., 2006. Regional Climate Change and Its Effects on River Runoff in the Tarim Basin, China. Hydrological Processes, 20(10): 2207–2216, doi: 10.1002/hyp.6200

    Article  Google Scholar 

  • Cheng, H., 1991. Impact of Water on the Eco-Geographic Environment along the Keriya River. Die Erde, 6: 148–164 (in Chinese with English Abstract)

    Google Scholar 

  • Fan, Z. L., Ji, F., 1989. The Changes of Natural Environment and the Green Corridor Protection in Middle-Lower Reaches of the Keriya River. Arid Zone Research, 3: 16–24 (in Chinese with English Abstract)

    Google Scholar 

  • Farge, M., 1992. Wavelet Transforms and Their Applications to Turbulence. Annual Review of Fluid Mechanics, 24: 395–457, doi:10.1146/annurev.fl.24.010192.002143

    Article  Google Scholar 

  • Foster, P., 2001. The Potential Negative Impacts of Global Climate Change on Tropical Montane Cloud Forests. Earth-Science Reviews, 55(1–2): 73–106, doi: 10.1016/S0012-8252(01)00056-3

    Article  Google Scholar 

  • Gan, T. Y., 1998. Hydro-Climatic Trends and Possible Climatic Warming in the Canadian Prairies. Water Resources Research, 34(11): 3009–3015

    Article  Google Scholar 

  • He, Y. Q., Pu, T., Li, Z. X., et al., 2010. Climate Change and Its Effect on Annual Runoff in Lijiang Basin-Mt. Yulong Region, China. Journal of Earth Science, 21(2): 137–147, doi:10.1007/s12583-010-0012-5

    Article  Google Scholar 

  • Helsel, D. R., Hirsch, R. M., 1992. Statistical Methods in Water Resources. Elsevier, Amsterdam. 522

    Google Scholar 

  • Kendall, M. G., 1975. Rank Correlation Methods. Charles Griffin, London. 10–35

    Google Scholar 

  • Meybeck, M., 2004. The Global Change of Continental Aquatic Systems: Dominant Impacts of Human Activities. Water Science and Technology, 49(7): 73–83

    Google Scholar 

  • Shi, Y. F., Shen, Y. P., Hu, R. J., 2002. Preliminary Study on Signal, Impact and Foreground of Climatic Shift from Warm-Dry to Warm-Humid in Northwest China. Journal of Glaciology and Geocryology, 24(3): 219–226 (in Chinese with English Abstract)

    Google Scholar 

  • Torrence, C., Compo, G. P., 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1): 61–78

    Article  Google Scholar 

  • van Belle, G., Hughes, J. P., 1984. Nonparametric Tests for Trend in Water Quality. Water Resources Research, 20(1): 127–136, doi:10.1029/WR020i001p00127

    Article  Google Scholar 

  • Wu, S. F., Han, P., Li, Y., et al., 2003. Predicated Variation Tendency of the Water Resources in the Headwaters of the Tarim River. Journal of Glaciology and Geocryology, 25(6): 708–711 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, C. C., Chen, Y. N., Li, W. H., et al., 2006. Climate Change and Hydrologic Process Response in the Tarim River Basin over the Past 50 Years. Chinese Science Bulletin, 51(Suppl. I): 25–36, doi:10.1007/s11434-006-8204-1

    Article  Google Scholar 

  • Xu, C. Y., 2000. Modelling the Effects of Climate Change on Water Resources in Central Sweden. Water Resources Management, 14: 177–189

    Article  Google Scholar 

  • Xu, H. L., Ye, M., Song, Y. D., 2005. Analysis and Prediction on the Periodical Change of Water Resources in the Tarim River Watershed. Arid Zone Research, 22(4): 454–457 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, B., Shi, Y. F., Braeuning, A., et al., 2004. Evidence for a Warm-Humid Climate in Arid Northwest China during 40–30 ka BP. J. Quaternary Science Reviews, 23(6): 2537–2548

    Article  Google Scholar 

  • Yang, X. P., Zhu, Z. D., Jaekel, D., et al., 2002. Late Quaternary Palaeoenvironment Change and Landscape Evolution along the Keriya River, Xinjiang, China: The Relationship between High Mountain Glaciation and Landscape Evolution in Foreland Desert Regions. Quaternary International, 97–98: 155–156, doi:10.1016/S1040-6182(02)00061-7

    Article  Google Scholar 

  • Zuo, Q. T., Gao, F., 2004. Periodic Overlap Prediction Model and Its Three Improved Models of Hydrological Time Series. Journal of Zhengzhou University (Engineering Science), 25(4): 67–73 (in Chinese with English Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Xu  (徐海量).

Additional information

This study was supported by the National Basic Research Program of China (No. 2009CB421308) and the Ministry of Water Resources Special Fund for Scientific Research on Public Causes (No. 201101049).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, H., Zhang, Q., Shi, W. et al. Runoff variation law and its response to climate change in the headstream area of the Keriya River basin, Xinjiang. J. Earth Sci. 22, 780–791 (2011). https://doi.org/10.1007/s12583-011-0227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-011-0227-0

Key words

Navigation