Skip to main content
Log in

Lattice solid/Boltzmann microscopic model to simulate solid/fluid systems—A tool to study creation of fluid flow networks for viable deep geothermal energy

  • Special Issue on Geohtermal Energy
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Summary

Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet’s future energy demands that a key geophysical problem be solved first: how to develop and maintain a network of multiple fluid flow pathways for the time required to deplete the heat within a given region. We present the key components for micro-scale particle-based numerical modeling of hydraulic fracture, and fluid and heat flow in geothermal reservoirs. They are based on the latest developments of ESyS-Particle—the coupling of the lattice solid model (LSM) to simulate the nonlinear dynamics of complex solids with the lattice Boltzmann method (LBM) applied to the nonlinear dynamics of coupled fluid and heat flow in the complex solid-fluid system. The coupled LSM/LBM can be used to simulate development of fracture systems in discontinuous media, elastic stress release, fluid injection and the consequent slip at joint surfaces, and hydraulic fracturing; heat exchange between hot rocks and water within flow pathways created through hydraulic fracturing; and fluid flow through complex, narrow, compact and gouge-or powder-filled fracture and joint systems. We demonstrate the coupled LSM/LBM to simulate the fundamental processes listed above, which are all components for the generation and sustainability of the hot-fractured rock geothermal energy fracture systems required to exploit this new green-energy resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abe, S., Mora, P., 2003. Efficient Implementation of Complex Particle Shapes in the Lattice Solid Model. Lecture Notes in Computer Science, 2659: 883–891

    Article  Google Scholar 

  • Abe, S., Mora, P., Place, D., 2000. Extension of the Lattice Solid Model to Incorporate Temperature Related Effects. Pure Appl. Geophys., 157: 1867–1887

    Article  Google Scholar 

  • Abe, S., Place, D., Mora, P., 2004. A Parallel Implementation of the Lattice Solid Model for the Simulation of Rock Mechanics and Earthquake Dynamics. Pure Appl. Geophys., 161(11–12): 2265–2277

    Google Scholar 

  • Alonso-Marroquin, F., Pena, A., Mora, P., et al., 2007. Simulation of Shear Bands Using a Discrete Model with Polygonal Particles. Discrete Element Methods Conference, Brisbane. 6–11

    Google Scholar 

  • Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H. J., et al., 2006. The Effect of Rolling on Dissipation in Fault Gouges. Phys. Rev. E., 74(1): 031306

    Article  Google Scholar 

  • Alonso-Marroquín, F., Wang, Y. C., 2009. An Efficient Algorithm for Granular Dynamics Simulations, with Complex-Shaped Objects. Granular Matter, 11: 317–329

    Article  Google Scholar 

  • Chen, S., Doolen, G., 1998. Lattice Boltzmann Method for Fluid Flows. Anu. Rev. Fluid Mech., 30: 329–364

    Article  Google Scholar 

  • Gingold, R. A., Monaghan, J. J., 1977. Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Mon. Not. R. Astron. Soc., 181: 375–389

    Article  Google Scholar 

  • Guo, Z., Zheng, C., Shi, B., et al., 2007. Thermal Lattice Boltzmann Equation for Low Mach Number Flows: Decoupling Model. Phys. Rev. E, 75(3): 036704

    Article  Google Scholar 

  • He, X., Chen, S., Doolen, G. D., 1998. A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit. J. Comp. Phys., 146: 282–300

    Article  Google Scholar 

  • Hung, L. H., Yang, J. Y., 2011. A Coupled Lattice Boltzmann Model for Thermal Flows. IMA J. Appl. Math., 76(5): 774–789

    Article  Google Scholar 

  • Khanal, M., Schubert, W., Tomas, J., 2008. Compression and Impact Loading Experiments of High Strength Spherical Composites. Int. J. Miner. Process, 86: 104–113

    Article  Google Scholar 

  • Komoróczi, A., Abe, S., Urai, J. L., 2013. Meshless Numerical Modeling of Brittle-Viscous Deformation: First Results on Boudinage and Hydro-fracturing Using a Coupling of Discrete Element Method (DEM) and Smoothed Particle Hydrodynamics (SPH). Comput. Geosci., 17: 373–390

    Article  Google Scholar 

  • Latham, S., Abe, S., Mora, P., 2005. Parallel 3D Simulation of a Fault Gouge Using the Lattice Solid Model. Pure Appl. Geophys., 163(9): 1949–1964

    Article  Google Scholar 

  • Mair, K., Abe, S., 2008. 3D Numerical Simulations of Fault Gouge Evolution during Shear: Grain Size Reduction and Strain Localization. Earth and Planetary Science Letters, 274(1–2): 72–81

    Article  Google Scholar 

  • Mora, P., 1992. A Lattice Solid Model for Rock Rheology and Tectonics. In: The Seismic Simulation Project Tech. Rep., Institut de Physique du Globe, Paris. 4: 3–28

    Google Scholar 

  • Mora, P., Place, D., 1993. A Lattice Solid Model for the Nonlinear Dynamics of Earthquakes. Int. J. of Modern Phys. C, 4: 1059–1074

    Article  Google Scholar 

  • Mora, P., Place, D., 1994. Simulation of the Frictional Stick-Slip Instability. Pure Appl. Geophys., 143: 61–87

    Article  Google Scholar 

  • Mora, P., Place, D., 1998. Numerical Simulation of Earthquake Faults with Gouge: Towards a Comprehensive Explanation for the Heat Flow Paradox. J. Geophys. Res., 103: 21067–21089

    Article  Google Scholar 

  • Mora, P., Place, D., 1999. The Weakness of Earthquake Faults. Geophys. Res. Lett., 26: 123–126

    Article  Google Scholar 

  • Mora, P., Place, D., 2002. Stress Correlation Function Evolution in Lattice Solid Elasto-Dynamic Models of Shear and Fracture Zones and Earthquake Prediction. Pure Appl. Geophys., 159: 2413–2427

    Article  Google Scholar 

  • Mora, P., Place, D., Abe, S., et al., 2000. Lattice Solid Simulation of the Physics of Earthquakes: The Model, Results and Directions. In: Rundle, J. B., Turcotte, D. L., Klein, W., eds., GeoComplexity and the Physics of Earthquakes (Geophysical Monograph Series 120). American Geophys. Union, Washington D.C.. 105–125

    Chapter  Google Scholar 

  • Mora, P., Place, D., Zeng, Y., 1997. The Effect of Gouge on Fault Strength and Dynamics. In: Proc. Symposium on Localization Phenomena and Granular Systems, Earth Institute/Lamont-Doherty Earth Observatory. Columbia University, New York. 67–73

    Google Scholar 

  • Mora, P., Wang, Y. C., Yin, C., et al., 2002. Simulation of the Load-Unload Response Ratio and Critical Sensitivity in the Lattice Solid Model. Pure Appl. Geophys., 159: 2525–2536

    Article  Google Scholar 

  • Place, D., Lombard, F., Mora, P., et al., 2002. Simulation of the Micro-Physics of Rocks Using LS-Mearth. Pure Appl. Geophys., 159: 1911–1932

    Article  Google Scholar 

  • Place, D., Mora, P., 1999. The Lattice Solid Model to Simulate the Physics of Rocks and Earthquakes: Incorporation of Friction. J. Comp. Phys., 1502: 332–372

    Article  Google Scholar 

  • Place, D., Mora, P., 2000. Numerical Simulation of Localisation Phenomena in a Fault Zone. Pure Appl. Geophys., 157: 1821–1845

    Article  Google Scholar 

  • Place, D., Mora, P., 2001. A Random Lattice Solid Model for Simulation of Fault Zone Dynamics and Fracture Process. In: Muhlhaus, H. B., Dyskin, A. V., Pasternak, E., eds., Bifurcation and Localization Theory for Soil and Rock’99. AA Balkema, Rotterdam/Brookfield

    Google Scholar 

  • Wang, Y. C., 2009. A New Algorithm to Model the Dynamics of 3-D Bonded Rigid Bodies with Rotations. Acta Geotechnica, 4: 117–127

    Article  Google Scholar 

  • Wang, Y. C., Abe, S., Latham, S., et al., 2006. Implementation of Particle-Scale Rotation in the 3D Lattice Solid Model. Pure Appl. Geophys., 163: 1769–1785

    Article  Google Scholar 

  • Wang, Y. C., Alonso-Marroquin, F., 2008. DEM Simulation of Rock Fragmentation and Size Distribution under Quasi-Static and Dynamic Loading Conditions. In: The first Southern Hemisphere International Rock Mechanics Symposium. The Australian Centre for Geomechanics, Perth. 16–19

    Google Scholar 

  • Wang, Y. C., Alonso-Marroquin, F., 2009. A Finite Deformation Method for Discrete Modeling: Particle Rotation and Parameter Calibration. Granular Matter, 11: 331–343

    Article  Google Scholar 

  • Wang, Y. C., Mora, P., 2008a. Elastic Properties of Regular Lattices. J. Mech. Phys. Solids, 56: 3459–3474

    Article  Google Scholar 

  • Wang, Y. C., Mora, P., 2008b. Modelling Wing Crack Extension: Implications to the Ingredients of Discrete Element Model. Pure Appl. Geophys., 165: 609–620

    Article  Google Scholar 

  • Wang, Y. C., Mora, P., 2009. ESyS-Particle: A New 3-D Discrete Element Model with Single Particle Rotation. In: Xing, H. L., ed., Advances in Geocomputing. Springer. 183–228

    Chapter  Google Scholar 

  • Xing, H. L., Mora, P., 2006. Construction of an Intraplate Fault System Model of South Australia, and Simulation Tool for the iSERVO Institute Seed Project. Pure Appl. Geophys., 163: 2297–2316

    Article  Google Scholar 

  • Yu, D., Mei, R., Luo, L., et al., 2003. Viscous Flow Computations with the Method of Lattice Boltzmann Equation. Proc. Aerospace Sci., 39: 329–367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, P., Wang, Y. & Alonso-Marroquin, F. Lattice solid/Boltzmann microscopic model to simulate solid/fluid systems—A tool to study creation of fluid flow networks for viable deep geothermal energy. J. Earth Sci. 26, 11–19 (2015). https://doi.org/10.1007/s12583-015-0516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0516-0

Key Words

Navigation