Skip to main content
Log in

Mineral chemistry of clays associated with the Late Cretaceous-early Palaeogene succession of the Um-Sohryngkew river section of Meghalaya, India: Palaeoenvironmental inferences and K/Pg transition

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

A unique, continuous, shallow marine succession within the Langpar Formation in the Um-Sohryngkew river section of Meghalaya contains late Maastrichtian through early Danian planktonic foraminiferal biozones (CF4-P1a) and the K/Pg boundary (between CF1 and P0). To resolve compositional overlap [in the three-fold clay mineral based sub-divisions of the section (include 1–2 mm thick yellowish brown clay layer in biozone CF3)] and to understand paleoenvironmental conditions prevalent at the time of K/Pg transition, micro-structural and compositional studies were carried out. The paper discusses accurate compositional limits of solid solubility in smectite and illite. Clay morphological attributes distinctly vary with the changes in the biozonation. Major oxide data plots for the litho-units (samples JP1-16) over binary diagrams, show clustering of plots within the illite compositional field. Plots based on structural formulae and layer charges of illite and kaolinite rich clays (from CF4 to Pla biozones), show closeness with the clay data fields of Agost, Caravaca, Petriccio and El-Kef K/T boundary sections as their charge occupancies at tetrahedral (Zt), octahedral (Zo) and interlayer (Zi) sites are similar. Thermodynamic data plots over ternary [AR2 3+Si3O10(OH)2 − R2 3+SiO4O10(OH)2 − A3AlSi4O10(OH)2] diagram, clustered within the illite compositional fields. Majority of illites shows high K values. They represent occasionally higher Altet. and lower Aloct. layer charges. Calculated palaeotemperature values for illite (from the CF4 to Pla zones) vary from 68 – 232ºC. Sudden rise in the temperature (>140ºC) of illite formation noticed in the upper part of the biozone CF3 (sample JP-12) is comparable to the K/T boundary layer of Caravaca section. Wide variation in the humid tropical to arid-semiarid climatic and thermal (diagenetic to low grade metamorphic) conditions noticed across the succession is possiby linked with the contemporaneous Abor / Deccan volcanic activities (at the time of their deposition) as also reflected in their clay layer [Si (2.95–3.68)] and interlayer [K+Na (0.4–4.61)] charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, S.K. and Puspendu, S. (2013) Age and tectono-magmatic setting of abor volcanics, siang window, eastern himalayan syntaxial area, India. Jour. Applied. Geochem., v.15, pp.170–192.

    Google Scholar 

  • Alegret, L. and Thomas, E. (2007) Deep sea environments across the Cretaceous/Paleocene boundary in the eastern South Atlantic Ocean (ODP Leg 208, Walvis Ridge). Marine Micropal., v.64, pp.1–17.

    Article  Google Scholar 

  • Alexandre, P., Kyser, K., Polito, P. and Thomas, D. (2005) Alteration mineralogy and stable isotope geochemistry of Paleoproterozoic basement-hosted unconformity-type uranium deposits in the Athabasca Basin, Canada. Econ. Geol., v.100, pp.1547–1563.

    Article  Google Scholar 

  • Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, H. V. (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science., v.208, pp.1095–1108.

    Article  Google Scholar 

  • Arenillas, I. and Arz, J.A. (2000) Parvularugoglobigerina eugubina type-sample at Ceselli (Italy): planktonic foraminiferal assemblage and lowermost Danian biostratigraphic implications. Rivista Italiana di Paleontologiae Stratigrafia. v.106, pp. 379–390.

    Google Scholar 

  • Arenillas, I., Jose, A., Arz, J. A., Molina, E. and Dupuis, C. (2000) The Cretaceous/Paleogene boundary at Ain Settara, Tunisia: sudden catastrophic mass extinction in planktonic foraminifera. Jour. Foram. Res., v.30, pp.202–218.

    Article  Google Scholar 

  • Bain, D.C. and Smith, B.E.L. (1987) Chemical analysis. In: M.J. Wilson, (Ed.), A Handbook of Determinative Methods in Clay Mineralogy. Blackie, Glasgow, pp.248–274.

    Google Scholar 

  • Barrera, E. (1994) Global environmental changes preceding the Cretaceous-Tertiary boundary: Early-upper Maastrichtian transition. Geology, v.22, pp.877–880.

    Article  Google Scholar 

  • Beaufort, D., Patrier, P., Laverret, E., Bruneton, P. and Mondy, J. (2005) Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator Rivers Uranium Field (Northern Territory, Australia). Econ. Geol., v.100, pp.515–536.

    Article  Google Scholar 

  • Bhandari, M., Shukla, P.M. and Pandey, J. (1987) Iridium enrichment at Cretaceous-Tertiary boundary in Meghalaya. Curr. Sci., v.56, pp.1003–1005.

    Google Scholar 

  • Bhandari, M., Gupta, M., Pandey, J. and Shukla, P.M. (1994) Chemical profiles in K/T boundary section of Meghalaya, India: cometary, asteroidalor volcanic. Chemical Geol., v. 113, pp. 45–60.

    Article  Google Scholar 

  • Biswas, B. (1962) Stratigraphy of the Mahadeo, Langpar, Cherra and Tura formations, Assam, India. Geol. Mining Metall. Soc. India Bull., v.25, pp.1–25.

    Google Scholar 

  • Cathelineau, M. and Nieva, D. (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system: Contrib. Mineral Petrol., v.91, pp.235–244.

    Google Scholar 

  • Cathelineau, M., Oliver, R. and Nieva, D. (1987) Quaternary volcanic series of the Los Azufres geothermal field (Mexico). Geofis Int., v.26, pp.273–290.

    Google Scholar 

  • Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Mineral. v.23, pp.471–485.

    Article  Google Scholar 

  • Cathelineau, M. and Izquierdo, G. (1988) Temperature - composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contrib. Mineral. Petrol., v.100, pp.418–428.

    Article  Google Scholar 

  • Courtillot, V., Jaeger, J. J., Yang, Z., Feraud, G. and Hoffman, C. (1996) The influence of continental flood basalts on mass extinction: where do we stand? Geol. Soc. Ame. Spec. Paper, v.307, pp.513–526.

    Google Scholar 

  • Courtillot, V., Gallet, Y., Rocchia, R., Feraud, G., Robin, E., Hoffman, C., Bhandari, N. and Ghevaria, Z.G. (2000) Cosmic markers, 40Ar/39Ar dating and palaomagnetism of the KT sections in the AnjarArea of the Deccan large igneous province. Earth Planet. Sci. Lett., v.182, pp.137–156.

    Article  Google Scholar 

  • Dasgupta, A. B. (1977). Geology of Assam-Arakan Region. Quat. Jour. Geol. Mining Metall. Soc. India, v.49, pp.1–54.

    Google Scholar 

  • Ellwood, B.B., Macdonald, W.D., Wheeler, C. and Benoist, S.L. (2003) The K/T boundary in Oman: identified using magnetic susceptibility and measurements with geochemical confirmation. Earth Planet. Sci. Lett., v.106, pp.529–540.

    Article  Google Scholar 

  • Galal, G. (2006) Late Maastrichtian-Early Danian serial planktonic foraminifera as indicators of paleoecology at West Central Sinai, Egypt. Revue de Paleobiologie. v.25, pp.439–436.

    Google Scholar 

  • Gertsch, B., Keller, G., Adatte, T., GARG, R., Prasad, V., Berner, Z. and Fleitmann, D. (2011) Environmental effects of Deccan volcanism across the Cretaceous–Tertiary transition in Meghalaya, India. Earth Planet. Sci. Lett., v.310, pp.272–285.

    Article  Google Scholar 

  • Gradstein, F.M., Ogg, J.G. and Schmitz, M. D. (2012) The Geologic Time Scale. Boston, USA, Elsevier, DOI: 10.1016/B978-0-444-59425-9.00004-4.

    Google Scholar 

  • Hart, M.B., Feist, S.E., Price, G.D. and Leng, M.J. (2004) Reappraisal of the K-T boundary succession at Stevns Klint, Denmark. Jour. Geol. Soc. London, v.161, pp.885–892.

    Article  Google Scholar 

  • Hart, M.B., Feist, S.E., Hakansson, E., Heinberg, C., Price, G.D., Leng, M.J. and Watkinson, M.P. (2005) The Cretaceous-Paleogene boundary succession at Stevns Klint, Denmark; Foraminifers and stable isotope stratigraphy. Palaeogeo. Paleoclimat. Paleoeco., v.224, pp.6–26.

    Article  Google Scholar 

  • Hassouta, L., Buatier, M.D., Potdevin, J.L. and Liewig, N. (1999) Clay diagenesis in the sandstone reservoir of the Ellon Field (Alwyn, North Sea). Clay Mineral., v.47, pp.269–285.

    Article  Google Scholar 

  • Hoffman, C., Feraud, G. and Courtillot, V. (2000) 40Ar/39Ar dating of mineral separates and whole rock from the western Ghat lava pile: further constraints on duration and age of Deccan Traps. Earth Planet. Sci. Lett., v.180, pp.13–27.

    Article  Google Scholar 

  • Hower, J. and Mowatt, T. C. (1966) Mineralogy of the illite-illite/montmorillonite group. Amer. Mineral., v.51, pp.821–854.

    Google Scholar 

  • Huang, P.M. (1990) Role of soil minerals in transformations of natural organics and xenobiotics in soil. In: J.M. Bollag and G. Stotzky (Eds.), Soil Biochemistry. Marcel Dekker Inc., New York, v.6, pp.29–115.

    Google Scholar 

  • Jackson, M.L. (Ed.) (1985) Soil Chemical Analysis Advance Course: 2nd edition, Madison, Wisconsin, pp.100–166.

    Google Scholar 

  • Jha, S. K., Shrivastava, J.P. and Bhairam, C. L. (2012) Clay mineralogical studies on Bijawars of the Sonrai Basin: Palaeoenvironmental implications and inferences on the uranium mineralization. Jour. Geol. Soc. India, v.79, pp.117–134.

    Article  Google Scholar 

  • Jowett, E.C. (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer: GAC/MAC/SEG Joint Annual Meeting (Toronto, May 27-29, 1991), Program with Abstracts 16, A62.

  • Keller, W.D. (1985) The nascence of clay minerals. Clays and Clay Minerals, v.33, pp.161–172.

    Article  Google Scholar 

  • Keller, W.D., Reynolds, R.C. and Inoue, A. (1986) Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy: Clays and Clay Minerals., v.34, pp.187–197.

    Google Scholar 

  • Keller, G. (2001) The end-Cretaceous mass extinction in the marine realm: year 2000 assessment. Planet. Space Sci., v.49, pp.817–830.

    Article  Google Scholar 

  • Keller, G. (2003) Biotic effects of impact and volcanism. Earth Planet. Sci. Lett., v.215, pp.249–264.

    Article  Google Scholar 

  • Keller, G. (2004) Low-diversity, late Maastrichtian and early Danian planktonic foraminiferal assemblages of the eastern Tethys. Jour. Foram. Res., v.34, pp.49–73.

    Article  Google Scholar 

  • Komninou, A. and Sverjensky, D.A. (1995) Pre-ore hydrothermal alteration in an unconformity-type uranium deposit. Contrib. Mineral. Petrol., v.121, pp.99–114.

    Article  Google Scholar 

  • Kranidiotis, P. and Maclean, W. H. (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide de-posit, Matagami, Quebec. Econ. Geol., v.82, pp.1898–1911.

    Article  Google Scholar 

  • Lahiri, T.C., Sen, M.K., Raychaudhuri, A.K. and Acharyya, S.K. (1988). Observations on Cretaceous/Tertiary boundary and reported iridium enrichment, Khasi Hills, Meghalaya. Curr. Sci., v.57, pp.1335–1336.

    Google Scholar 

  • Laird, D.A. and Nater, E.A. (1993) Nature of the illitic phase associated with randomly interstratified smectite/illite in soils. Clays and Clay Minerals, v.41, pp.280–287.

    Article  Google Scholar 

  • Medlicott, H.B. (1871) Geological sketch of Shillong Plateau. Geol. Surv. India Mem., v.7, pp.151–207.

    Google Scholar 

  • Merriman, R.J. and Peacor, D.R. (1999) Very low-grade metapelites:mineralogy, microfabrics and measuring reaction progress. In: M. Frey and D. Robinson (Eds.), Low grade metamorphism. Blackwell.

    Google Scholar 

  • Mukhopadhyay, S.K. (2008) Planktonic for aminiferal succession in late Cretaceous to early Palaeocene strata in Meghalaya, India. Lethaia., v.41, pp.71–84.

    Article  Google Scholar 

  • Mukhopadhyay, S.K. (2009) Convener’s report for 2008 on the progress of work in the IGCP Project 507, on ‘Palaeoclimate in Asia during the Cretaceous: their variations, causes, and biotic and environmental responses’. IGCP Ind. Newslett., v.29, pp.11–13.

    Google Scholar 

  • Mukhopadhyay, S.K. (2011) Can late Maastrichian planktonic foraminifera and palaeoclimatic help understand the problems of Present Day global warming? Ch. 22, Earth Resource and Environment (Ed. R. Venkatchalapathy), Research Publishing, Singapore.

    Google Scholar 

  • Mukhopadhyay, S.K. (2012a) Guembelitria (Foraminifera) in the Upper Cretaceous-Lower Paleocene succession of the Langpar Formation, India, and its paleoenvironmental implication. Jour. Geol. Soc. India, v.79, pp.627–651.

    Article  Google Scholar 

  • Mukhopadhyay, S.K. (2012b) Morphogroups and small sized tests in Pseudotextularia elegans (Rzehak) from the Late Maastrichtian succession of Meghalaya, India as indicators of biotic response to paleoenvironmental stress. Jour. Asian Earth Sci., v.48, pp.111–124.

    Article  Google Scholar 

  • Nagappa, Y. (1959) Foraminiferal biostratigraphy of the Cretaceous-Eocene succession in the India-Pakistan-Burma region. Micropaleontology, v.5, pp.145–192.

    Article  Google Scholar 

  • Nutt, C.J. (1989) Chloritization and associated alteration at the Jabiluka unconformity-type uranium deposit, Northern Territory, Australia. Canadian Mineralogist, v.27, pp.41–58.

    Google Scholar 

  • Ortega-Huertas, M., Palomo, I., Marti´Nez-Ruiz, F. and Gonzalez I. (1998) Geological factors controlling clay mineral patterns across the Cretaceous-Tertiary boundary in Mediterranean and Atlantic sections. Clay Minerals, v.33, pp.483–500.

    Article  Google Scholar 

  • Pal, S., Shrivastava, J.P. and Mukhopadhyay, S.K. (2015) Polycyclic Aromatic Hydrocarbon compound excursions and K/Pg transition in the late Cretaceous-early Paleogene succession of the Um-Sohryngkew river section, Meghalaya. Curr. Sci., v.109, pp.1140–1150.

    Article  Google Scholar 

  • Pal, S., Shrivastava, J.P. and Mukhopadhyay, S.K. (in press) Physils and organic matter-base palaeoenvironmental records of the K/Pg boundary transition from the late Cretaceous-early Palaeogene succession of the Um Sohryngkew river section of Meghalaya, India. Chemie der Erde-Geochemistry, http://dx.doi.org/10.1016/j.chemer.2015.09.004

  • Pandey, J. (1981) Cretaceous foraminifera of Um Sohryngkew River section, Meghalaya. Jour. Palaeo. Soc. India, v.25, pp.53–74.

    Google Scholar 

  • Pandey, J. (1990). Cretaceous/Tertiary boundary, iridium anomaly and foraminifer breaks in the Um Sohryngkew River section. Curr. Sci., v.59, pp.570–575.

    Google Scholar 

  • Pardo, A., Ortiz, N. and Keller, G. (1996) Latest Maastrichtian and K/T boundary foraminiferal turnover and environmental changes at Agost, Spain. In: N. McLeod and G. Keller (Eds.), Biotic and Environmental Events across the Cretaceous/Tertiary Boundary. Norton, New York, NY, pp.139–171.

    Google Scholar 

  • Paul, R.R., Allen, L.D., Frederik, J.H., Klaudia, F.K., Darren, F.M., William, S.M., Leah, E.M., Ronald, M. and Jan, S. (2013) Time scale of critical events around Cretaceous-Paleogene boundary. Science, v.339, pp.684–687

    Article  Google Scholar 

  • Polito, P.A., Kyser, T.K., Thomas, D., Marlatt, J. and Drever, G. (2005) Re-evaluation of the petrogenesis of the Proterozoic Jabiluka unconformity-related uranium deposit, Northern Territory, Australia. Mineralium Deposita, v.40, pp.238–257.

    Article  Google Scholar 

  • Ragland, P.C. (1989) Basic analytical petrology. 369p.

    Google Scholar 

  • Rampino, M.R. and Reynolds R.C. (1983) Clay mineralogy of the Cretaceous-Tertiary Boundary Clay. Science, v.219, pp.495–498.

    Article  Google Scholar 

  • Ransom, B. and Helgeson, H.C. (1989). On the correlation of expandability with mineralogy and layering in mixed-layer clays. Clays and Clay Minerals, v.37, pp.189–191.

    Article  Google Scholar 

  • Ransom, B. and Helgeson, H.C. (1993). Compositional end member and thermodynamic components of illite and dioctahedral aluminous smectite solid solutions. Clays & Clay Minerals, v.41, pp.537–550.

    Article  Google Scholar 

  • Ross, C.S. and Hendricks, S.B. (1945) Minerals of the montmorillonite group. USGS Prof. Paper, 205B, pp.23–47.

    Google Scholar 

  • Samanta, B.K. (1974) The limits and subdivisions of Palaeocene with remarks on the marine occurrences recorded in the India-Pakistan region. Geol. Mining Metall. Soc. India, Golden Jubilee Volume, pp.183–205.

    Google Scholar 

  • Sengupta, S., Acharya, S.K. and De Smeth, J.B. (1996) Geochemical characteristics of the Abor volcanic rocks, NE Himalaya, India: nature and early Eocene magmatism. Jour. Geol. Soc. London, v.153, pp.695–704.

    Article  Google Scholar 

  • Shrivastava, J.P., Mukhopadhyay, S.K. and Pal, S. (2013) Chemico-mineralogical attributes of clays from the late Cretaceouseearly Palaeogene succession of the Um Sohryngkew river section of Meghalaya, India: palaeoenvironmental inferences and the K/Pg boundary. Cretaceous Res., v.45, pp.247–257.

    Article  Google Scholar 

  • Small, J.S., HAMILTON D.L. and Habesch, S. (1992) Experimental Simulation of Clay Precipitation within Reservoir Sandstones 2: Mechanism of Illite Formation and Controls on Morphology. Jour. Sed. Petrol., v.62(3), pp.520–529.

    Google Scholar 

  • Smit, J. and Hertogen, J. (1980) An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature., v.285, pp.198–200.

    Article  Google Scholar 

  • Sordon, J. and Ebrel, D.D. (1984) Illite. In: S.W. Bailey, (Ed.), Micas. Reviews in Mineralogy 13, Min. Soc. Amer., Washington, D.C., pp.495–544.

    Google Scholar 

  • Strong, C.P. (2000) Cretaceous-Tertiary foraminiferal succession at Flaxbourne River, Marlborough, New Zealand. Jour. Geol. Geophys., v.43, pp.1–20.

    Article  Google Scholar 

  • Vidal, O., Parra, T. and Trotet, F. (2001) A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the100º to 600ºC, 1 to 25 kb range. Amer. Jour. Sci., v.301, pp.557–592.

    Article  Google Scholar 

  • Warren, E.A. and Ransom, B. (1992) The influence of analytical error upon the interpretation of chemical variations in clay minerals on standard clay diagrams AEM and XRD. Clay Miner., v.6, pp.17–22.

    Google Scholar 

  • Weaver, C.E. and Pollard, L.D. (1973) The chemistry of clay minerals, Elsevier, 213p.

    Google Scholar 

  • Weaver, C.E., Highsmith, P.B. and Wampler, J.M. (1984) Chlorite (Chapter 5). In: C.A. Weaver et al. (Eds.), Shale-Slate Metamorphism in Southern Appalachians. Developments in Petrology, Elsevier, Amsterdam., v.10, pp.99–139.

    Article  Google Scholar 

  • Yassini, I. (1979) Maastrichtian-Lower Eocene biostratigraphy and the planktonic foraminiferal biozonation in Jordan. Revista Espanola de Micropal., v.11, pp.5–57.

    Google Scholar 

  • Zang, W. and Fyfe, W.S. (1995) Chloritization of the hydrothermally altered bedrocks at the Igarapé Bahia gold deposit, Carajás, Brazil. Miner. Depos., v.30, pp.30–38.

    Article  Google Scholar 

  • Zhang, X.Y., Arimoto, R. and An, Z.S. (1997) Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Jour. Geophy. Res., v.102(D23), pp.28041–28047.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Shrivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Shrivastava, J.P. & Mukhopadhyay, S.K. Mineral chemistry of clays associated with the Late Cretaceous-early Palaeogene succession of the Um-Sohryngkew river section of Meghalaya, India: Palaeoenvironmental inferences and K/Pg transition. J Geol Soc India 86, 631–647 (2015). https://doi.org/10.1007/s12594-015-0355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-015-0355-8

Keywords

Navigation