Skip to main content
Log in

Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

A comprehensive use of analytical hierarchy process (AHP) method in landslide susceptibility mapping (LSM) has been presented for rim region of Tehri reservoir. Using remote sensing data, various landslide causative factors responsible for inducing instability in the area were derived. Ancillary data such as geological map, soil map, and topographic map were also considered along with remote sensing data. Exhaustive field checks were performed to define the credibility of the random landslide conditioning factors considered in this study. Apart from universally acceptable inherent causative factors used in the susceptibility mapping, others such as impact of reservoir impoundment on terrain, topographic wetness index and stream power index were found to be important causative factors in rim region of the Tehri reservoir. The AHP method was used to acquire weights of factors and their classes respectively. Weights achieved from AHP method matched with the existing field conditions. Acceptable consistency ratio (CR) value was achieved for each AHP matrix. Weights of each factor were integrated with weighted sum technique and a landslide susceptibility index map was generated. Jenk’s natural break classifier was used to classify LSI map into very low, low, moderate, high and very high landslide susceptible classes. Validation of the susceptibility map was performed using cumulative percentage/success rate curve technique. Area under curve value of the success rate curve was converted to percentage validation accuracy and a reasonable 78.7% validation accuracy was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleotti, P. and Chowdhury, R. (1999) Landslide hazard assessment: summary review and new perspectives. Bull. Engg. Geol. Environ., v.58, pp.21–44.

    Article  Google Scholar 

  • Anbalagan, R. (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Engg. Geol., v.32, pp.269–277.

    Article  Google Scholar 

  • Anbalagan, R., Chakraborty, D. and Kohli, A. (2008) Landslide hazard zonation (LHZ) mapping on meso-scale for systematic town planning in mountainous terrain. Jour. Sci. Indus. Rese., v.67, pp.486–497.

    Google Scholar 

  • Arora, M.K., Das Gupta, A.S. and Gupta, R.P. (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int. Jour. Remote Sens., v.25, pp. 559–572.

    Article  Google Scholar 

  • Ayalew, L., Yamagishi, H. and Ugawa, N. (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, v.1, pp.73–81

    Article  Google Scholar 

  • Ayalew, L., Yamagishi, H., Marui, H. and Kanno, T. (2005) Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engg. Geol., v.81, pp.432–445.

    Google Scholar 

  • Brabb, E.E. (1984) Innovative approaches to landslide hazard mapping. In: Proc. 4th Internat. Symposium on Landslides, Toronto, v.1, pp.307–324.

    Google Scholar 

  • Begueria, S. (2006) Validation and evaluation of predictive models in hazard assessment and risk management, Nat. Hazard., v.37(3), pp. 315–329.

    Article  Google Scholar 

  • Chakraborty, D. and Anbalagan, R. (2008) Landslide hazard evaluation of road cut slopes along Uttarkashi–Bhatwari road, Uttaranchal Himalaya. Jour. Geol. Soc. India, v.71, pp. 115–124.

    Google Scholar 

  • Champatiray, P.K., Suvarna, D., Lakhera, R.C. and Sati, S. (2007) Fuzzy based method for landslide hazard zonation in active seismic zone of Himalaya. Landslides, v.5, pp.101–111.

    Article  Google Scholar 

  • Chung, C.J. and Fabbri, A.G. (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazard., v.30, pp.451–472.

    Article  Google Scholar 

  • Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S. and Paudyal, P. (2008) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology, v.102, pp.496–510.

    Article  Google Scholar 

  • Dahal, R. K., Hasegawa, S., Nonomura, S., Yamanaka, M., Masuda, T. and Nishino, K. (2009) GIS-based weights-ofevidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ. Geol., v.54, pp. 314–324.

    Google Scholar 

  • DAI, F.C., LEE, C.F., LI, J. and XU, Z.W. (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ. Geol., v.40, pp.381–391.

    Article  Google Scholar 

  • Dai, F.C., Lee, C.F. and Ngai, Y.Y. (2002) Landslide risk assessment and management: an overview. Engg. Geol., v.64(1), pp.65–87.

    Article  Google Scholar 

  • Das, I., Sahoo, S., Van Westen, C. J., Stein, A. and Hack, R. (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, v.114, pp.627–637.

    Article  Google Scholar 

  • Das, I., Stein, A., Kerle, N. and Dadhwal N. (2012) Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models. Geomorphology, v.179, pp. 116–125.

    Article  Google Scholar 

  • Ercanoglu, M. and Gokceoglu, C. (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engg. Geol., v.75 (3–4), pp.229–250. ESRI.

    Article  Google Scholar 

  • FAQ. (2012) What is the Jenks optimization method? http://support.esri.com/en/knowledgebase/techarticles/detail/26442.

    Google Scholar 

  • Feizizadeh, B. and Blaschke, T. (2103) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran, Nat Hazards, v.65, pp.2105–2128

    Article  Google Scholar 

  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E. and Savage, W.Z. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engg. Geol., v.102 (3–4), pp.99–111.

    Article  Google Scholar 

  • Ghosh, S., Carranza, E. J. M., Vanwesten, C. J., Jetten, V. and Bhattacharya, D. N. (2011) Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India). Geomorphology, v.131, pp.35–56.

    Article  Google Scholar 

  • Gorsevski, P.V., Jankowski, P. and Gessler, P.E. (2006) An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control. Cybern., v.35, pp.21–141.

    Google Scholar 

  • Gupta, P. and Anbalagan, R. (1997) Landslide hazard zonation (LHZ) and mapping to assess slope stability of parts of the proposed Tehri dam reservoir, India. Quart. Jour. Engg. Geol., v.30, pp. 27–36.

    Article  Google Scholar 

  • Gupta, R.P. and Joshi, B.C. (1990) Landslide Hazard Zonation using the GIS Approach -A case Study from the Ramganga Catchment, Himalayas, Engg. Geol. v.28, pp.119–131.

    Google Scholar 

  • Gupta, R.P., Saha, A.K., Arora, M.K. and Kumar, A. (1999) Landslide hazard zonation in a part of Bhagirathy Valley, Garhwal Himalayas, using integrated Remote Sensing & GIS. Jour. Him. Geol., v.20, pp.71–85.

    Google Scholar 

  • Gupta, R.P., Kanungo, D.P., Arora, M.K. and Sarkar, S. (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int. Jour. App. Earth. Obs. Geoinformation., v.10, pp.330–341.

    Article  Google Scholar 

  • Guzetti, F., Carrara, A. and Cardinali, M. and Reichenbach, P. (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology, v.31, pp.181–216.

    Article  Google Scholar 

  • Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M. and Ardizzone, F. (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology, v.72, pp. 272–299.

    Article  Google Scholar 

  • Hutchinson, J.N. (1995) Keynote paper: landslide hazard assessment. In: Bell (Ed.), Landslides: Balkema, Rotterdam, pp.1805–1841.

    Google Scholar 

  • Kanungo, D. P., Arora, M. K., Sarkar, S. and Gupta, R.P. (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility Zonation in Darjeeling Himalayas. Engg. Geol., v.85, pp.347–366.

    Article  Google Scholar 

  • Kanungo, D. P., Arora, M. K., Sarkar, S. and Gupta, R. P. (2009) Landslide Susceptibility Zonation (LSZ) Mapping–A Review. Jour. South Asia Disaster Studies, v.2, pp.81–105.

    Google Scholar 

  • Kanungo, D. P., Arora, M. K., Sarkar, S. and Gupta, R. P. (2009a) A Fuzzy Similarity Concept Based Rating Determination and Fuzzy Gamma Operator Based Thematic Maps Integration for Landslide Susceptibility Zonation. Georisk, v.3, pp.30–40.

    Google Scholar 

  • Kayastha, P., Dhital, M. and De Smedt, F. (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput. Geosci., v.52, pp.398–408.

    Article  Google Scholar 

  • Kayastha, P., Dhital, M. and De Smedt, F. (2012) Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal. Nat Hazards v.63(2), pp.479–498

    Article  Google Scholar 

  • Kumar, R. and Anbalagan, R. (2013) Pixel based terrain analysis for Landslide Hazard Zonation, a case study of Tehri reservoir region, Uttarakhand, India, In Geos. Remote Sens. Sym. (IGARSS), IEEE, Int., pp. 2868–2871

    Google Scholar 

  • Kundu, S., Saha, A.K., Sharma, D.C. and Pant, C.C. (2013) Remote Sensing and GIS Based Landslide Susceptibility Assessment using Binary Logistic Regression Model: A Case Study in the Ganeshganga Watershed, Himalayas. Jour. Ind. Soc. Remote Sens., v.41(3), pp.697–709

    Article  Google Scholar 

  • LEE, S. (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int. Jour. Remote Sens., v.26 (7), pp.1477–1491.

    Article  Google Scholar 

  • Lee, S. and Sambath, T. (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency and logistic regression models. Environ. Geol., v.50, pp. 847–856.

    Article  Google Scholar 

  • Lee, S. and Pradhan, B. (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, v.4, pp.33–41.

    Article  Google Scholar 

  • Mathew, J., Jha,V. K. and Rawat, G. S. (2007) Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Curr. Sci., v.92, pp.628–638.

    Google Scholar 

  • Mathew, J., Jha, V.K. and Rawat, G.S. (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using Binary Logistic Regression analysis and receiver operating characteristic curve method. Landslides, v.6 pp.17–26.

    Article  Google Scholar 

  • Malczewski, J. (1999) GIS and multi criteria decision analysis. Wiley, New York, 408p.

    Google Scholar 

  • Mondal, S. and Maiti, R. (2012) Landslide susceptibility analysis of Shiv-Khola watershed, Darjiling: a remote sensing & GIS based Analytical Hierarchy Process (AHP). Jour. Indian Soc. Remote Sens., v.40 (3), pp.483–496.

    Article  Google Scholar 

  • Nagarajan, R., Mukherjee, A., Roy, A. and Khire, M.V. (1998) Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. Int. Jour. Remote Sens., v.19, pp.573–585

    Article  Google Scholar 

  • Pachauri, A.K. and Pant, M. (1992) Landslide hazard mapping based on geological attributes. Engg. Geol., v.32, pp.81–100.

    Article  Google Scholar 

  • Pradhan, B. and LEE, S. (2009) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ. Earth. Sci., v.60, pp.1037–1054.

    Article  Google Scholar 

  • Pradhan, B. and Lee, S. (2010) Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia. Environ. Earth Sci., v.60, pp.1037–1054.

    Article  Google Scholar 

  • Pradhan, B. (2010) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv. Space. Rese., v.45, pp.1244–1256.

    Article  Google Scholar 

  • Saaty, T.L. (1977) A scaling method for priorities in hierarchical structures. Jour. Math. Psycho., v.15, pp.234–281.

    Article  Google Scholar 

  • Saaty, T.L. (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill International Book Company, New York.

    Google Scholar 

  • Saha, A.K., Gupta, R.P. and Arora, M.K., (2002) GISbased landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. Int. Jour. Remote Sens., v.23 (2), pp. 357–369.

    Article  Google Scholar 

  • Saha, A.K., Gupta, R.P., Sarkar, I., Arora, M.K. and Csaplovics, E. (2005) An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides, v.2, pp.61–69.

    Article  Google Scholar 

  • Sarkar, S. and Kanungo, D. P. (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photo. Engg. & Remote Sens., v.70, pp.617–625.

    Article  Google Scholar 

  • Sharma, S., Raghuvanshi, T. and Anbalagan, R. (1994) Plane failure analysis of rock slopes. Int. Jour. Geotec. Geol. Engg., v.13, pp.105–111.

    Article  Google Scholar 

  • Sharma, S., Raghuvanshi, T.K. and Anbalagan, R. (1995) Plane failure analysis of rock slopes, technical note. Geotech. Geol. Engg., v.13, pp.105–111.

    Article  Google Scholar 

  • Singh, T.N., Gulati, A., Dontha, L.K. and Bharadwaj V. (2008) Evaluating cut slope failure by numerical analysis—a case study. Nat Hazards, v.47, pp.263–279.

    Article  Google Scholar 

  • Soeters, R. and Vanwesten, C. (1996) Slope stability: recognition, analysis and zonation. In: A. Turner and R. Shuster (Eds.), Landslides: investigation and mitigation, National Academy Press, Washington, D. C., pp.129–177.

    Google Scholar 

  • Suzen, M.L. and Doyuran, V. (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Engg. Geol., v.71, pp.303–321.

    Article  Google Scholar 

  • Valdiya, K.S. (1980) Geology of Kumaun Lesser Himalaya. Dehradun: Wadia Institute of Himalayan Geology. Interim. Report, pp. 291

    Google Scholar 

  • Van Westen, C.J., Van Asch, T.W.J. and Soeters, R. (2006) Landslide hazard and risk zonation— why is still so difûcult? Bulletin. Engg. Geol. Environ., v.65, pp.167–184.

    Article  Google Scholar 

  • Varnes, D.J., (1984) Landslide Hazard Zonation: A Review of Principles and Practice, Natural Hazards 3, Commission on Landslides of the IAEG, UNESCO, Paris, France, 63 p.

    Google Scholar 

  • Watershed Management Directorate, Dehradun (2009) Report on Uttarakhand State perspective and strategic planning 2009-2027. file:///D:/For%20review/UTTARAKHAND%20SOIL.pdf

    Google Scholar 

  • Wilson, J.P. and Gallant, J.C. (2000) Terrain Analysis: Principles and Applications,” John Wiley & Sons Ltd., New York, USA, pp.1–27

    Google Scholar 

  • Wilson, J. (2011) Digital terrain modelling. Geomorphology, v.5, pp. 269–297. www.digitalglobe.com/8bandchallenge -(2010 )Acquisition of World view–2 data.

    Google Scholar 

  • Yalcin, A. (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, v.72, pp.1–12.

    Article  Google Scholar 

  • Yesilnacar, E. and Topal, T. (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engg. Geol., v.79(3–4), pp.251–266

    Article  Google Scholar 

  • Zimmerman, M., Bichsel, M. and Kienholz, H. (1986) Mountain hazards mapping in the Khumbu Himal, Nepal, with prototype map, scale 1:50,000. Mountain Research and Development, v.6(1), pp.29–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Anbalagan, R. Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India 87, 271–286 (2016). https://doi.org/10.1007/s12594-016-0395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-016-0395-8

Keywords

Navigation