Skip to main content
Log in

Statistical Completeness Analysis of Seismic Data

  • Published:
Journal of the Geological Society of India

Abstract

Earthquakes constitute one of the most powerful forces to which most civil engineering structures and historical constructions will ever be subjected; and thus designing and preserving structures to resist these forces is of utmost importance. The goal of earthquake-resistant design is to produce a structure or facility that can withstand a certain level of shaking without excessive damage. Seismic hazard analyses involve the quantitative estimation of ground shaking hazards at a particular site.

The main objective of this study is to develop a homogeneous earthquake catalogue for the low seismic region Warangal from 1800 to 2016 by considering a circular radius of 500 km. The catalogue is declustered using the algorithm proposed by Uhrhammer (1986) for removal of foreshocks and aftershocks. All the events have been converted to moment magnitude scale for homogenization. Completeness analysis has been carried out using the method proposed by Stepp (1972) to determine the time interval in which the data is complete over different magnitude ranges. The analysis shows that for the magnitude range of 3.0 ≤ M ≤ 3.49, 3.5 ≤ M ≤ 3.99, 4.0 ≤ M ≤ 4.49, 4.5 ≤ M ≤ 4.99, 5.0 ≤ M ≤ 5.49 and M ≤ 5.49, the data is complete for the last 50 years (1967-2016), 60 years (1957-2016), 140 years (1867-2016) and 180 years (1837-2016) respectively. This study will provide a significant under-standing in distribution of earthquakes in Warangal region as well as the assessment of seismic hazard for the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelrahman, K., Al-Amri, A., Al-Arifi, N. and Abdelmoneim, E. (2017) Seismic risk assessment at the proposed site of Gemsa wind power station, southwestern coast of Gulf of Suez, Egypt. Jour. Geol. Soc. India, v.89(2), pp.192–196.

    Article  Google Scholar 

  • Anbazhagan, P., Vinod, J.S. and Sitharam, T.G. (2009) Probabilistic seismic hazard analysis for Bangalore. Natural Hazards, v.48(2), pp.145–166.

    Article  Google Scholar 

  • Ambraseys, N.N. (1971) Value of historical records of earthquakes. Nature, v.232, pp.375–379.

    Article  Google Scholar 

  • Ameer, A.S., Sharma, M.L., Wason, H.R. and Alsinawi, S.A. (2005) Probabilistic seismic hazard assessment for Iraq using complete earthquake catalogue files. Pure Appld. Geophys., v.162(5), pp.951–966.

    Article  Google Scholar 

  • Bolt, B.A. and Brune, J.N. (1989) The importance of strong motion seismology in India. Proc. Indian Acad. Sciences Earth Planet. Sci., v.98(1), pp.125–132.

    Google Scholar 

  • Bora, D.K. (2016) Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India. Earthquake Sci., v.29(3), pp.153–164.

    Article  Google Scholar 

  • Braunmiller, J., Deichmann, N., Giardini, D., Wiemer, S. and SED Magnitude Working Group. (2005) Homogeneous moment-magnitude calibration in Switzerland. Bull. Seismol. Soc. Amer., v.95(1), pp.58–74.

    Article  Google Scholar 

  • Chandra, U. (1977) Earthquakes of peninsular India–a seismotectonic study. Bull. Seismol. Soc. Amer., v.67(5), pp.1387–1413.

    Google Scholar 

  • Cornell, C.A. (1968) Engineering seismic risk analysis. Bull. Seismol. Soc. Amer., v.58(5), pp.1583–1606.

    Google Scholar 

  • Dasgupta, S., Pande, P., Ganguly, D., Iqbal, Z., Sanyal, K., Venaktraman, N.V., Dasgupta, S., Sural, B., Harendranath, L., Mazumadar, K., Sanyal, S., Roy, A., Das, L.K., Misra, P.S. and Gupta, H. (2000) Seismotectonic Atlas of India and its Environs. Geol. Surv. India, Calcutta, India.

    Google Scholar 

  • Gardner, J.K. and Knopoff, L. (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Amer., v.64(5), pp.1363–1367.

    Google Scholar 

  • Guha, S.K. and Basu, P.C. (1993) Catalogue of earthquakes (=> M 3.0) in peninsular India (No. AERB-TD-CSE—1). Atomic Energy Regulatory Board.

    Google Scholar 

  • Gutenberg, B. and Richter, C.F. (1956) Earthquake magnitude, intensity, energy, and acceleration (second paper). Bull. Seismol. Soc. Amer., v.46(2), pp.105–145.

    Google Scholar 

  • Heaton, T. H., Tajima, F. and Mori, A. W. (1986) Estimating ground motions using recorded accelerograms. Surveys in Geophys., v.8(1), pp.25–83.

    Article  Google Scholar 

  • Idriss, I.M. (1985) Evaluating seismic risk in engineering practice. Proceedings of the eleventh international conference on soil mechanics and foundation engineering, pp.255–320.

    Google Scholar 

  • IS. (1893). Part 1 (2002) Criteria for Earthquake Resistant Design of Structures. Bureau of Indian Stand ards, New Delhi.

    Google Scholar 

  • ISC (2014) International Seismological Centre, On-line Bulletin, http://www.isc.ac.uk, Internatl. Seismol. Cent., Thatcham, United Kingdom, 2014.

    Google Scholar 

  • Iyengar, R.N., Chadha, R.K., Balaji Rao, K. and Raghukanth, S. T.G. (2010) Development of probabilistic seismic hazard map of India. Report on the National Disaster Management Authority, Government of India, India.

    Google Scholar 

  • Jaiswal, K. and Sinha, R. (2007) Probabilistic seismic-hazard estimation for peninsular India. Bull. Seismol. Soc. Amer., v.97(1B), pp.318–330.

    Article  Google Scholar 

  • Khan, Z., El-Emam, M., Irfan, M. and Abdalla, J. (2013) Probabilistic seismic hazard analysis and spectral accelerations for United Arab Emirates. Natural hazards, v.67(2), pp.569–589.

    Article  Google Scholar 

  • Kolathayar, S. and Sitharam, T. G. (2012) Comprehensive probabilistic seismic hazard analysis of the Andaman–Nicobar regions. Bull. Seismol. Soc. Amer., v.102(5), pp.2063–2076.

    Article  Google Scholar 

  • Kolathayar, S., Sitharam, T. G. and Vipin, K. S. (2012) Spatial variation of seismicity parameters across India and adjoining areas. Natural hazards, v.60(3), pp.1365–1379.

    Article  Google Scholar 

  • Mahajan, A.K. and Ghosh, G.K. (2007) Statistical analysis of completeness of earthquake data of Northwest Himalayan region and its implication for seismicity evaluation. In: Varma, O.P., Mahajan, A.K., Gupta, V. (Eds.), Natural hazard: proceeding of the National Conference on “Natural Hazards (earthquakes and land slides): challenges, perspectives and societal dimensions with focus on the state of Uttaranchal”, Dehradun, December 26-28, 2003, pp.45–56.

  • Mahajan, A.K., Thakur, V.C., Sharma, M.L. and Chauhan, M. (2010) Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India. Natural Hazards, v.53(3), pp.443–457.

    Article  Google Scholar 

  • Mohan, I., Sitaram, M.V.D. and Gupta, H.K. (1981) Some recent earthquakes in peninsular India. Jour. Geol. Soc. India, v.22(6), pp.292–298.

    Google Scholar 

  • Molchan, G.M. and Dmitrieva, O.E. (1992) Aftershock identification: methods and new approaches. Geophys. Jour. Internat., v.109(3), pp.501–516.

    Article  Google Scholar 

  • Mulargia, F. and Tinti, S. (1985) Seismic sample areas defined from incomplete catalogues: an application to the Italian territory. Phys. Earth Planet. Inter., v.40(4), pp.273–300.

    Article  Google Scholar 

  • Muthuganeisan, P. and Raghukanth, S. T. G. (2016) Site-specific probabilistic seismic hazard map of Himachal Pradesh, India. Part II. Hazard estimation. Acta Geophysica, v.64(4), pp.853–884.

    Article  Google Scholar 

  • Naganjaneyulu, K., Naidu, G.D., Rao, M.S., Shankar, K.R., Kishore, S.R.K., Murthy, D.N., Veeraswamy, K. and Harinarayana, T. (2010) Deep crustal electromagnetic structure of central India tectonic zone and its implications. Phys. Earth Planet. Inter., v.181(1), pp.60–68.

    Article  Google Scholar 

  • Nath S.K., Thingbaijam K.K.S. and Ghosh S.K. (2010) Earthquake catalogue of South Asia-a generic MW scale framework, www.earthqhaz.net/sacat

    Google Scholar 

  • Raj, K.G. and Nijagunappa, R. (2004) Major Lineaments of Karnataka State and their Relation to Seismicity: A Remote Sensing Based Analysis. Jour. Geol. Soc. India, v.63(4), pp.430–439.

    Google Scholar 

  • Rao, B.R. and Rao, P.S. (1984) Historical seismicity of peninsular India. Bull. Seismol. Soc. Amer., v.74(6), pp.2519–2533.

    Google Scholar 

  • Reasenberg, P. (1985) Second order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, v.90(B7), pp.5479–5495.

    Article  Google Scholar 

  • Sangode, S. J., Meshram, D. C., Kulkarni, Y. R., Gudadhe, S. S., Malpe, D. B. and Herlekar, M. A. (2013) Neotectonic response of the Godavari and Kaddam rivers in Andhra Pradesh, India: Implications to Quaternary reactivation of old fracture system. Jour. Geol. Soc. India, v.81(4), pp.459–471.

    Article  Google Scholar 

  • Sawires, R., Peláez, J.A., Fat-Helbary, R.E. and Ibrahim, H.A. (2016) An Earthquake Catalogue (2200 BC to 2013) for seismotectonic and seismic hazard assessment studies in Egypt. Earthquakes and their Impact on Society, pp.97–136.

    Chapter  Google Scholar 

  • Scordilis, E. M. (2006) Empirical global relations converting Ms and mb to moment magnitude. Jour. Seismol., v.10(2), pp.225–236.

    Article  Google Scholar 

  • Sil, A., Sitharam, T. G. and Haider, S. T. (2015) Probabilistic Models for Forecasting Earthquakes in the Northeast Region of India. Bull. Seismol. Soc. Amer., v.105(6), pp.2910–2927.

    Article  Google Scholar 

  • Singh, S.K., Rodríguez, M. and Espindola, J.M. (1984) A catalog of shallow earthquakes of Mexico from 1900 to 1981. Bull. Seismol. Soc. Amer., v.74(1), pp.267–279.

    Google Scholar 

  • Sitharam, T. G. and Sil, A. (2014) Comprehensive seismic hazard assessment of Tripura and Mizoram states. Jour. Earth System Sci., v.123(4), pp.837–857.

    Article  Google Scholar 

  • So, M.M.L., Mote, T. and Pappin, J.W. (2016) Seismic hazard assessment of South Korea. Japanese Geotech. Soc. Spec. Publ., v.2(20), pp.755–760.

    Google Scholar 

  • Srinagesh, D., Chadha, R.K., Raju, P.S., Suresh, G., Vijayaraghavan, R., Sarma, A.N.S., Sekhar, M. and Murty, Y.V.V.B.S.N. (2015) Seismicity studies in eastern Dharwar craton and neighbouring tectonic regions. Jour. Geol. Soc. India, v.85(4), pp.419–430.

    Article  Google Scholar 

  • Srivastava, H.N. and Ramachand ran, K. (1985) New catalogue of earthquakes for peninsular India during 1839-1900. Mausam, v.36(3), pp.351–358.

    Google Scholar 

  • Stepp, J.C. (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proc. 1st Internat. Conf. Microzonazion, Seattle, v.2, pp.897–910.

    Google Scholar 

  • Thingbaijam, K.K.S., Nath, S.K., Yadav, A., Raj, A., Walling, M. Y. and Mohanty, W.K. (2008) Recent seismicity in northeast India and its adjoining region. Jour. Seismol., v.12(1), pp.107–123.

    Article  Google Scholar 

  • Uhrhammer, R.A. (1986) Characteristics of northern and central California seismicity. Earthquake Notes, v.57(1), pp.21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Muzzaffar Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.M., Kalyan Kumar, G. Statistical Completeness Analysis of Seismic Data. J Geol Soc India 91, 749–753 (2018). https://doi.org/10.1007/s12594-018-0934-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-018-0934-6

Navigation