Skip to main content
Log in

A new theoretical approach to design HOSP-based subtractor

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this article, we propose the realization of all-optical soliton-based subtractor using hypersecant pulse. As for the need of high-speed modern communication system and digital communication regime, we introduce a new and easy concept to generate all-optical logic design, particularly the logic subtractor using HOSP. The HOSP propagates through a nonlinear medium and they interact with a sufficient phase matching condition. In this paper we analyze the intensity of resultant pulse of hypersecant optical soliton pulse (HOSP) and consider that the intensity is analogous with binary bit. As for particle like characteristics of soliton, we can use this pulse as a digital bit. For difference logic of subtractor we use two HOSP and for borrow logic we use three HOSP with proper phase and amplitude condition. The result as discussed here was simulated by MATLAB simulator with proper programming algorithm. So, the result as theoretically discussed here is satisfied by a simulator and we can get practical implementation of logic subtractor also using optical pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.C. Kuriakose, K. Porsezian, Elements of optical solitons: an overview. Resonance 15, 643–666 (2010)

    Article  Google Scholar 

  2. P. Singh, D.K. Tripathi, S. Jaiswal, H.K. Dixit, All-optical logic gates: designs, classification, and comparison. Adv. Opt. Technol. (2014). https://doi.org/10.1155/2014/275083

    Article  Google Scholar 

  3. J. Scheuer, M. Orenstein, All-optical gates facilitated by soliton interactions in a multilayered Kerr medium. J. Opt. Soc. Am. 22, 1260 (2005)

    Article  ADS  Google Scholar 

  4. M.N. Islam, All-optical cascadable NOR gate with gain. Opt. Lett. 15, 417 (1990)

    Article  ADS  Google Scholar 

  5. X. Liu, K. Beckwitt, F. Wise, Noncollinear generation of optical spatiotemporal solitons and application to ultrafast digital logic. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 61, 4722–4725 (2000)

    Google Scholar 

  6. P. Kuila, Theoretical study of using an amplitude modulation scheme with an electro-optic modulator for generation of the proper power shape function of an optical soliton pulse in a nonlinear waveguide. Opt. Eng. 45, 045002 (2006)

    Article  ADS  Google Scholar 

  7. M. Snehalata Mundhe, M. Samata Bhosale, M. Sunaya Shirodkar, Evolution of solitons in optical communication. Int. J. Res. Advent. Technol. 3, 2321–9637 (2015)

    Google Scholar 

  8. E.M. Wright, All-optical switching using solitons. Opt. Quantum Electron. 24, 97–102 (1992)

    Article  Google Scholar 

  9. P. Kuila, A. Sinha, S. Mukhopadhyay, An all-optical remote controlled X-Nor logic using soliton pulse. Optoelectron. Lett. 4, 0365–0368 (2008)

    Article  ADS  Google Scholar 

  10. A. Ghadi, S. Sohrabfar, All-optical multiple logic gates based on spatial optical soliton interactions. IEEE Photonics Technol. Lett. 30, 569–572 (2018)

    Article  ADS  Google Scholar 

  11. S.K. Garai, S. Mukhopadhyay, A method of optical implementation of frequency encoded different logic operations using second harmonic and difference frequency generation techniques in non-linear material. Opt. Int J. Light Electron. Opt. 121, 715–721 (2010)

    Article  Google Scholar 

  12. A. Raja, K. Mukherjee, J.N. Roy, Design analysis and applications of all-optical multifunctional logic using a semiconductor optical amplifier-based polarization rotation switch. J. Comput. Electron 20, 387–396 (2021)

    Article  Google Scholar 

  13. J. Banerjee, M. Bera, M. Ray, Surface Plasmon Resonance Based Differential Phase Analysis Using Mach-Zehnder Interferometric Set-Up (Springer, Singapore, 2017)

    Book  Google Scholar 

  14. R. Gangwar, S.P. Singh, N. Singh, Soliton based optical communication. Prog. Electromagn. Res. 74, 157–166 (2007)

    Article  Google Scholar 

  15. A.M. Alatwi, A.N.Z. Rashed, A pulse amplitude modulation scheme based on in-line semiconductor optical amplifiers (soas) for optical soliton systems. Indones. J. Electr. Eng. Comput. Sci. 21, 1014–21 (2021)

    Google Scholar 

  16. Eh. Shaik, N. Rangaswamy, Realization of all-optical NAND and NOR logic functions with photonic crystal based NOT, OR and AND gates using De Morgan’s theorem. J. Opt. 47, 8–21 (2018)

    Article  Google Scholar 

  17. Y. Song, X. Shi, C. Wu, D. Tang, H. Zhang, Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, 021313 (2019)

    Article  ADS  Google Scholar 

  18. A. Hasegawa, F. Tappert, Transmission of stationary non-linear optical pulses in dispersive dielectric fibre. Appl. Phys. Lett. 23, 171 (1973)

    Article  ADS  Google Scholar 

  19. S.K. Turitsyn, B.G. Bale, M.P. Fedoruk, Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521, 135–203 (2012)

    Article  ADS  Google Scholar 

  20. S.P. Chakkravarthy, V. Arthi, S. Karthikumar, A.N.Z. Rashed, P. Yupapin, I.S. Amiri, Ultra high transmission capacity based on optical first order soliton propagation systems. Results Phys. 12, 512–513 (2019)

    Article  ADS  Google Scholar 

  21. H. Thapliyal, N. Ranganathan, A new design of the reversible subtractor circuit. Proc. IEEE Conf. Nanotechnol. pp 1430–1435 (2011)

  22. A. Ghadi, All-optical computing circuits half-subtractor and comparator based on soliton interactions. Optik 227, 166079 (2021). (Stuttg)

    Article  ADS  Google Scholar 

  23. S. Thongmee, P.P. Yupapin, All optical half adder/subtractor using dark-bright soliton conversion control. Proc. Eng. 8, 217–222 (2011)

    Article  Google Scholar 

  24. K. Mukherjee, Method of implementation of frequency encoded all optical half adder, half subtractor and full adder based on semiconductor optical amplifiers and add drop multiplexers. Optik 122, 1188–1194 (2011). (Stuttg)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, C., Sinha, A. A new theoretical approach to design HOSP-based subtractor. J Opt 52, 254–260 (2023). https://doi.org/10.1007/s12596-022-00871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00871-7

Keywords

Navigation