Skip to main content
Log in

Aluminum-doped ZnO nano-laminar structures by pulsed laser ablation for gas sensing application

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this study, aluminum-doped zinc oxide (AZO) at 0.3 wt.% was synthesized by a pulsed Nd: YAG laser with a fundamental wavelength (1064 nm). The laser beam is focused on a ZnO-doped target immersed in distilled water at two pulse energies of 200 and 400 mJ. The procedure was applied in two cases: without and with the presence of the magnetic field. AZO nanoparticles were investigated by UV–visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and electron microscopy (SEM). In addition, a mixture of metal oxide nanoparticles was used for gas-sensing application. XRD shows the enhancement of crystallization in the presence of the magnetic field. SEM images show the adoption of AZO thin nanostructures in the high surface region with applying an external magnetic field and with increasing laser power. The AZO-based syngas sensor has greater sensitivity against NO2 gas than H2S gas with an optimal operating temperature of 200 °C. The use of laser energy of 400 mJ with a magnetic field leads to the creation of a nanostructure with a large surface area, which makes it highly sensitive, especially to NO2 gas compared to other samples. The prepared active layer for the gas sensor has an acceptable sensitivity against NO2 gas more than H2S gas with an optimal operating temperature of 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.-Y. Tsay, K.-S. Fan, S.-H. Chen, C.-H. Tsai, Preparation and characterization of ZnO transparent semiconductor thin films by sol–gel method. J. Alloys Compd. 495, 126–130 (2010). https://doi.org/10.1016/j.jallcom.2010.01.100

    Article  CAS  Google Scholar 

  2. C. Klingshirn, R. Hauschild, J. Fallert, H. Kalt, Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing. Phys. Rev. B. 75, 115203 (2007). https://doi.org/10.1103/PhysRevB.75.115203

    Article  CAS  ADS  Google Scholar 

  3. C. Li, Y. Li, Y. Wu, B.-S. Ong, R.-O. Loutfy, Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors. J. Mater. Chem. 19, 1626 (2009). https://doi.org/10.1039/b812047a

    Article  CAS  Google Scholar 

  4. C. Li, X. Fan, L. Yu, L. Cui, M. Yin, Y. Li, N. Nan, N. Liu, A resistive-type UV detector based on ZnO nanowalls decoated by Ag nanowires. Opt. Mater. 103, 109891 (2020). https://doi.org/10.1016/j.optmat.2020.109891

    Article  CAS  Google Scholar 

  5. X. Zheng, Y. Sun, H. Qin, Z. Ji, H. Chi, Interface engineering on ZnO/Au based Schottky junction for enhanced photoresponse of UV detector with TiO2 inserting layer. J. Alloys Compd. 816, 152537 (2020). https://doi.org/10.1016/j.jallcom.2019.152537

    Article  CAS  Google Scholar 

  6. A. Wibowo, M.A. Marsudi, M.I. Amal, M.B. Ananda, R. Stephanie, H. Ardy, L.J. Diguna, ZnO nanostructured materials for emerging solar cell applications. RSC Adv. 10, 42838–42859 (2020). https://doi.org/10.1039/D0RA07689A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. F. Rahman, Zinc oxide light-emitting diodes: a review. Opt. Eng. 58, 1 (2019). https://doi.org/10.1117/1.OE.58.1.010901

    Article  Google Scholar 

  8. S. Nie, D. Dastan, J. Li, W.-D. Zhou, S.-S. Wu, Y.-W. Zhou, X.-T. Yin, Gas-sensing selectivity of n-ZnO/p-Co3O4 sensors for homogeneous reducing gas. J. Phys. Chem. Solids. 150, 109864 (2021). https://doi.org/10.1016/j.jpcs.2020.109864

    Article  CAS  Google Scholar 

  9. H. Zhang, G. Tian, D. Xiong, T. Yang, S. Zhong, L. Jin, B. Lan, L. Deng, S. Wang, Y. Sun, W. Yang, W. Deng, Understanding the enhancement mechanism of ZnO nanorod-based piezoelectric devices through surface engineering. ACS Appl. Mater. Interfaces. 14, 29061–29069 (2022). https://doi.org/10.1021/acsami.2c02371

    Article  CAS  PubMed  Google Scholar 

  10. Z. Zhang, X. Chen, J. Kang, Z. Yu, J. Tian, Z. Gong, A. Jia, R. You, K. Qian, S. He, B. Teng, Y. Cui, Y. Wang, W. Zhang, W. Huang, The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions. Nat. Commun. 12, 4331 (2021). https://doi.org/10.1038/s41467-021-24621-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. V.H. Nguyen, J. Resende, D.T. Papanastasiou, N. Fontanals, C. Jiménez, D. Muñoz-Rojas, D. Bellet, Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density. Nanoscale 11, 12097–12107 (2019). https://doi.org/10.1039/C9NR02664A

    Article  CAS  PubMed  Google Scholar 

  12. S.D. Ponja, S. Sathasivam, I.P. Parkin, C.J. Carmalt, Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci. Rep. 10, 638 (2020). https://doi.org/10.1038/s41598-020-57532-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. A.M. Mostafa, A.A. Menazea, Laser-assisted for preparation ZnO/CdO thin film prepared by pulsed laser deposition for catalytic degradation. Radiat. Phys. Chem. 176, 109020 (2020). https://doi.org/10.1016/j.radphyschem.2020.109020

    Article  CAS  Google Scholar 

  14. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, Enhancement of ZnO nanorods properties using modified chemical bath deposition method: effect of precursor concentration. Crystals 10, 386 (2020). https://doi.org/10.3390/cryst10050386

    Article  CAS  Google Scholar 

  15. D.T. Speaks, Effect of concentration, aging, and annealing on sol gel ZnO and Al-doped ZnO thin films. Int. J. Mech. Mater. Eng. 15, 2 (2020). https://doi.org/10.1186/s40712-019-0113-6

    Article  Google Scholar 

  16. A. Patil, C. Dighavkar, R. Borse, Al doped ZnO thick films as CO 2 gas sensors. J. Optoelectron. Adv. Mater. 13, 1331–1337 (2011)

    CAS  Google Scholar 

  17. M. Özgür, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, U. Demirkol, S. Elmas, S. Özen, Ş Korkmaz, Al doped ZnO thin film deposition by thermionic vacuum arc. J. Mater. Sci. Mater. Electron. 30, 624–630 (2019). https://doi.org/10.1007/s10854-018-0329x

    Article  Google Scholar 

  18. D.R.A. El-Hafiz, M.A. Ebiad, A.A.E. Sakr, Ultrasonic-assisted nano-nickel ferrite spinel synthesis for natural gas reforming. J. Inorg. Organomet. Polym. Mater. 31, 1–10 (2021). https://doi.org/10.1007/s10904-020-01718-z

    Article  CAS  Google Scholar 

  19. M.M. ElFaham, M. Okil, A.M. Mostafa, Effects of post-laser irradiation on the optical and structure properties of Al 2 O 3 nanoparticles produced by laser ablation. J. Appl. Phys. 128, 153104 (2020). https://doi.org/10.1063/5.0022554

    Article  CAS  ADS  Google Scholar 

  20. F. Taccogna, M. Dell’Aglio, M. Rutigliano, G. Valenza, A. De Giacomo, On the growth mechanism of nanoparticles in plasma during pulsed laser ablation in liquids. Plasma Sources Sci. Technol. 26, 045002 (2017). https://doi.org/10.1088/1361-6595/aa595b

    Article  CAS  ADS  Google Scholar 

  21. A.G. Ardakani, P. Rafieipour, Using ZnO nanosheets grown by electrodeposition in random lasers as scattering centers: the effects of sheet size and presence of mode competition. J. Opt. Soc. Am. B. 35, 1708 (2018). https://doi.org/10.1364/JOSAB.35.001708

    Article  CAS  ADS  Google Scholar 

  22. M.A. Kadhim, A.A. Ramadhan, M.O.S. Al-Gburi, G.J. Habi, N.J. Hentawe, Effect of mixing ratio of (SnO2)1–x(In2O3)x thin film on gas sensitivity. Karbala Int. J. Mod. Sci. 6, 83–92 (2020). https://doi.org/10.33640/2405-609X.1403

    Article  Google Scholar 

  23. B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430–4431 (2003). https://doi.org/10.1021/ja0299452

    Article  CAS  PubMed  Google Scholar 

  24. S. Vempati, J. Mitra, P. Dawson, One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res. Lett. 7, 470 (2012). https://doi.org/10.1186/1556-276X-7-470

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  25. N. Tripathy, R. Ahmad, H. Kuk, Y.-B. Hahn, G. Khang, Mesoporous ZnO nanoclusters as an ultra-active photocatalyst. Ceram. Int. 42, 9519–9526 (2016). https://doi.org/10.1016/j.ceramint.2016.03.030

    Article  CAS  Google Scholar 

  26. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, CO2gas sensing properties of DC reactive magnetron sputtered ZnO thin film. Ceram. Int. 40, 13115–13122 (2014). https://doi.org/10.1016/j.ceramint.2014.05.011

    Article  CAS  Google Scholar 

  27. D. Patidar, A. Kaswan, N.S. Saxena, K. Sharma, Monodispersed ZnO nanoparticles and their use in heterojunction solar cell. Sci. World J. 2013, 1–6 (2013). https://doi.org/10.1155/2013/260521

    Article  CAS  Google Scholar 

  28. I.M. McIntosh, A.R.L. Nichols, K. Tani, E.W. Llewellin, Accounting for the species-dependence of the 3500 cm −1 H 2 O t infrared molar absorptivity coefficient: Implications for hydrated volcanic glasses. Am. Mineral. 102, 1677–1689 (2017). https://doi.org/10.2138/am-2017-5952CCBY

    Article  ADS  Google Scholar 

  29. K. Schneider, W. Maziarz, V2O5 thin films as nitrogen dioxide sensors. Proceedings 2, 1–5 (2018). https://doi.org/10.3390/proceedings2130759

    Article  Google Scholar 

  30. L. Francioso, A. Forleo, S. Capone, M. Epifani, A.M. Taurino, P. Siciliano, Nanostructured In2O3–SnO2 sol–gel thin film as material for NO2 detection. Sensors Actuators B. 114, 646–655 (2006). https://doi.org/10.1016/j.snb.2005.03.124

    Article  CAS  Google Scholar 

  31. H. Xuemei, S. Yukun, B. Bo, Fabrication of cubic p-n heterojunction-like NiO/In2O3 composite microparticles and their enhanced gas sensing characteristics. J. Nanomater. 2016, 1–9 (2016)

    Article  Google Scholar 

  32. Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors. 12, 2610–2631 (2012). https://doi.org/10.3390/s120302610

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. D. Liu, Z. Tang, Z. Zhang, Comparative study on NO2 and H2S sensing mechanisms of gas sensors based on WS2 nanosheets. Sensors Actuators B Chem. 303, 127114 (2020). https://doi.org/10.1016/j.snb.2019.127114

    Article  CAS  Google Scholar 

  34. M.A. Franco, P.P. Conti, R.S. Andre, D.S. Correa, A review on chemiresistive ZnO gas sensors. Sensors Actuators Rep. 4, 100100 (2022)

    Article  Google Scholar 

  35. K.G. Krishna, G. Umadevi, S. Parne, N.P. Othukanuri, Zinc oxide based gas sensors and their derivatives: a critical review. J. Mater. Chem. C (2023). https://doi.org/10.1039/D2TC04690C

    Article  Google Scholar 

Download references

Funding

The present research did not receive any grant from funding agencies in the public, commercial or not-for-profit sectors. So its personal work and the statement of declaration of interests are only mine and support has been subjected during the research work for the past year.

Author information

Authors and Affiliations

Authors

Contributions

Each co-author has made specific unique contributions to the work. The authors ZMA prepared the thin films of ZnO and contributed to conceptualizations writing–original draft. The author QAA prepared the special program for optical properties and contributed to supervision and editing analysis.

Corresponding author

Correspondence to Zahraa Marid Abbas.

Ethics declarations

Conflict of interest

Authors would like to declare that they do not have any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z.M., Abbas, Q.A. Aluminum-doped ZnO nano-laminar structures by pulsed laser ablation for gas sensing application. J Opt 53, 544–557 (2024). https://doi.org/10.1007/s12596-023-01192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01192-z

Keywords

Navigation