Skip to main content
Log in

A bookshelf layer model for anti-kink and kink pair solitons in the ferroelectric liquid crystal

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We theoretically investigate the soliton dynamics of ferroelectric liquid crystal materials used in display devices. The approximations and extensions to existing device technology fields where mathematical analysis would improve optical device development are given special consideration. The ferroelectric liquid crystal maintained between two parallel electrical conductors is taken into consideration in order to illustrate bookshelf geometry. These liquid crystal molecules are influenced by an electric field due to their spontaneous polarization. The effect of electric fields and molecular excitations has been successfully established. We study Hirota’s bilinearization method and the \((G'/G)\) expansion method for ferroelectric liquid crystals, which can be expressed by the Sine–Gordon equation governing the soliton dynamics in crystal systems. We suggest that this kind of collisional solitonic humps in nematicon profiles indicates the wide range of optical switching strategies for network design and logic gates. This switching mechanism may have enormous applications in multiplexing liquid crystal displays with higher resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.A. Clark, S.T. Lagerwall, Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 36, 899–901 (1980)

    Article  ADS  Google Scholar 

  2. R.B. Meyer, L. Liebert, L. Strzelacki, P. Keller, Ferroelectric liquid crystals. J. Phys. Lett. 36, 69–71 (1975)

    Article  Google Scholar 

  3. M. Hird, Ferroelectricity in liquid crystals-materials, properties and applications. Liq. Cryst. 38(11–12), 1467–1493 (2011)

    Article  Google Scholar 

  4. E. Nabadda, N. Bennis, M. Czerwinski, A. Walewska, L.R. Jaroszewicz, María del M. Sánchez-López, I. Moreno, Ferroelectric liquid-crystal modulator with large switching rotation angle for polarization-independent binary phase modulation. Opt. Laser. Eng. 159, 107204 (2022)

  5. I. Dierking, A study of the continuous layer rotation dynamics in ferroelectric SMC* liquid crystals. Ferroelectrics 256, 103–111 (2001)

    Article  ADS  Google Scholar 

  6. V. Manjuladevi, Y.P. Panarin, J.K. Vij, Experimental study for the conditions of analog switching in ferroelectric liquid crystal cells. Appl. Phys. Lett. 91, 052911 (2007)

    Article  ADS  Google Scholar 

  7. T. Shingu, T. Tsuchiya, Y. Ouchi, H. Takezoe, A. Fukuda, Molecular selective pre-tilt on glass surfaces and color difference between two twisted states in surface stabilized ferroelectric liquid crystal cells. Jpn. J. Appl. Phys. 25, L206 (1986)

    Article  ADS  Google Scholar 

  8. T.D. Ibragimov, G.M. Bayramov, A.R. Imamaliev, A.R. Imamaliev, Clark–Lagerwall effect in the small particles-ferroelectric liquid crystal system. Optik 124, 343–346 (2013)

    Article  ADS  Google Scholar 

  9. E.P. Pozhidaev, S.I. Torgova, V.A. Barbashov, Electro-optics of ferroelectric and antiferroelectric liquid crystal helical nanostructures. J. Mol. Liq. 367, 120493 (2022)

    Article  Google Scholar 

  10. N.J. Mottram, S.J. Hogan, Magnetic field-induced changes in molecular order in nematic liquid crystals. Contin. Mech. Thermodyn. 14, 281–295 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Peccianti, G. Assanto, Nematic liquid crystals: a suitable medium for self-confinement of coherent and incoherent light. Phys. Rev. E 65, 035603 (2002)

    Article  ADS  Google Scholar 

  12. M. Ye, Y.G. Yang, Fluid motion effect in self-phase modulation of an intense laser beam interacting with a nematic liquid crystal film. J. Opt. 28, 33–40 (1999)

    Article  Google Scholar 

  13. H.K. Bisoyi, Q. Li, Liquid crystals: versatile self-organized smart soft materials. Chem. Rev. 122, 4887–4926 (2022)

    Article  Google Scholar 

  14. P.J. Collings, J.W. Goodby, Introduction to Liquid Crystals: Chemistry and Physics (CRC Press, Boca Raton, 2019)

    Book  Google Scholar 

  15. R.B. Meyer, L. Liebert, L. Strzelacki, P. Keller, Ferroelectric liquid crystals. J. Phys. Lett. 36, L69-79 (1975)

    Article  Google Scholar 

  16. D.W. McLaughlin, A.C. Scott, Perturbation analysis of fluxon dynamics. Phys. Rev. A 18, 1652 (1978)

    Article  ADS  Google Scholar 

  17. Y. Li, X. Lu, C. Hou, The Sine–Gordon solitons in nematic liquid crystals under the external electric field. Res. Phys. 10, 297–300 (2018)

    Google Scholar 

  18. E.M.E. Zayed, R.M.A. Shohib, M.E.M. Alngar, A. Biswas, M. Ekici, S. Khan, A.K. Alzahrani, M.R. Belic, Optical solitons and conservation laws associated with Kudryashov’s sextic power-law nonlinearity of refractive index. Ukr. J. Phys. Opt. 22(1), 38–49 (2021)

    Article  Google Scholar 

  19. A.R. Adem, B.P. Ntsime, A. Biswas, S. Khan, A.K. Alzahrani, M.R. Belic, Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan–Porsezian–Daniel model having Kerr law of nonlinear refractive index. Ukr. J. Phys. Opt. 22(2), 83–86 (2021)

    Article  Google Scholar 

  20. A. Biswas, J. Edoki, P. Guggilla, S. Khan, A.K. Alzahrani, M.R. Belic, Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by semi-inverse variational principle. Ukr. J. Phys. Opt. 22(3), 123–127 (2021)

    Article  Google Scholar 

  21. Y. Yıldırım, A. Biswas, P. Guggilla, S. Khan, H.M. Alshehri, M.R. Belic, Optical solitons in fibre Bragg gratings with third- and fourth-order dispersive reflectivities. Ukr. J. Phys. Opt. 22, 239–254 (2021)

    Article  Google Scholar 

  22. Y. Yıldırım, A. Biswas, A. Dakova, P. Guggilla, S. Khan, H.M. Alshehri, M.R. Belic, Cubic–quartic optical solitons having quadratic–cubic nonlinearity by Sine–Gordon equation approach. Ukr. J. Phys. Opt. 22, 255–269 (2021)

    Article  Google Scholar 

  23. E.M.E. Zayed, R.M.A. Shohib, M.E.M. Alngar, A. Biswa, Y. Yıldırım, A. Dakova, H.M. Alshehri, M.R. Belic, Optical solitons in the Sasa–Satsuma model with multiplicative noise via Itô calculus. Ukr. J. Phys. Opt. 23(1), 9–14 (2022)

    Article  Google Scholar 

  24. Y. Yıldırım, A. Biswas, S. Khan, M.F. Mahmood, H.M. Alshehri, Highly dispersive optical soliton perturbation with Kudryashov’s sextic-power law of nonlinear refractive index. Ukr. J. Phys. Opt. 23(1), 24–29 (2022)

    Article  Google Scholar 

  25. O. González-Gaxiola, A. Biswas, Y. Yıldırım, H.M. Alshehri, Highly dispersive optical solitons in birefringent fibres with non-local form of nonlinear refractive index: Laplace–Adomian decomposition. Ukr. J. Phys. Opt. 23(2), 68–76 (2022)

    Article  Google Scholar 

  26. A.A. Al Qarni, A.M. Bodaqah, A.S.H.F. Mohammed, A.A. Alshaery, H.O. Bakodah, A. Biswas, Cubic–quartic optical solitons for Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme. Ukr. J. Phys. Opt. 23, 228–242 (2022)

  27. A.A. Al Qarni, A.M. Bodaqah, A.S.H.F. Mohammed, A.A. Alshaery, H.O. Bakodah, A. Biswas, Dark and singular cubic–quartic optical solitons with Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme. Ukr. J. Phys. Opt. 24, 46–61 (2023)

  28. A. Arnous, A. Biswas, Y. Yildirim, L. Moraru, M. Aphane, S. Moshokoa, H.M. Alshehri, Quiescent optical solitons with Kudryashov’s generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution. Ukr. J. Phys. Opt. 24, 105–113 (2023)

    Article  Google Scholar 

  29. A. Kukkar, S. Kumar, S. Malik, A. Biswas, Y. Yildirim, S. Moshokoa, S. Khan, A. Alghamdi, Optical solitons for the concatenation model with Kurdryashov’s approaches. Ukr. J. Phys. Opt. 24, 155–154 (2023)

    Article  Google Scholar 

  30. A. Biswas, J.M. Vega-Guzman, Y. Yildirim, S.P. Moshokoa, M. Aphane, A.A. Alghamdi, Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients. Ukr. J. Phys. Opt. 24, 185–192 (2023)

    Article  Google Scholar 

  31. O. Gonzalez-Gaxiola, A. Biswas, J. Ruiz de Chavez, A. Asiri, Bright and dark optical solitons for the concatenation model by the Laplace–Adomian decomposition scheme. Ukr. J. Phys. Opt. 24, 222–234 (2023)

    Article  Google Scholar 

  32. R. Kumar, R. Kumar, A. Bansal, A. Biswas, Y. Yildirim, S.P. Moshokoa, A. Asiri, Optical solitons and group invariants for Chen–Lee–Liu equation with time-dependent chromatic dispersion and nonlinearity by Lie symmetry. Ukr. J. Phys. Opt. 24, 04021–04029 (2023)

    Article  Google Scholar 

  33. E.M.E. Zayed, M.A. Shohib Reham, A. Biswas, Y. Yakup, A. Maggie, S.P. Moshokoa, S. Khan, A. Asiri, Gap solitons with cubic–quartic dispersive reflectivity and parabolic law of nonlinear refractive index. Ukr. J. Phys. Opt. 24, 04030–04045 (2023)

  34. A. Muniyappan, S. Amirthani, P. Chandrika, A. Biswas, Y. Yıldırım, H.M. Alshehri, D.A.A. Maturi, D.H. Al-Bogami, Dark solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiber. Optik 255, 168641 (2022)

    Article  ADS  Google Scholar 

  35. M. Wang, Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 199, 169–172 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. E.M.E. Zayed, K.A. Gepreel, The \((G^{\prime }/G)\) expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50, 013502 (2009)

  37. E.H.M. Zahran, A. Bekir, New unexpected explicit optical soliton solutions to the perturbed Gerdjikov–Ivanov equation. J. Opt. 6, 66 (2022)

    Google Scholar 

  38. L. Yang, J. Liu, K. Yang, Exact solutions of nonlinear PDE, nonlinear transformations and reduction nonlinear PDE to a quadrature. Phys. Lett. A 278, 267–270 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, On the solitary wave solutions for nonlinear Euler equations. Appl. Anal. 83, 1101–1132 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. J.L. Hu, Solution of the Dirac equation with position-dependent mass in the Coulomb field. Phys. Lett. A 322, 211–216 (2004)

    ADS  MathSciNet  Google Scholar 

  41. A. Muniyappan, O. Athira Priya, S. Amirthani, K. Brintha, A. Biswas, M. Ekici, A. Dakova, H.M. Alshehri, M.R. Belic, Peakon and cuspon excitations in optical fibers for eighth order nonlinear Schrödinger’s model. Optik 243, 167509 (2021)

  42. W. Malfliet, Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. A. Muniyappan, A. Suruthi, B. Monisha, N. SharonLeela, J. Vijaycharles, Dromion-like structures in a cubic–quintic nonlinear Schrödinger equation using analytical methods. Nonlinear Dyn. 104, 1533–1544 (2021)

    Article  Google Scholar 

  44. J. Tan, Z.-H. Deng, T. Wu, B. Tang, Propagation and interaction of magnetic solitons in a ferromagnetic thin film with the interfacial Dzyaloshinskii–Moriya interaction. J. Mag. Mag. Mater. 475, 445–452 (2019)

    Article  ADS  Google Scholar 

  45. L. Kavitha, A. Muniyappan, S. Zdravković, M.V. Satarić, A. Marlewski, S. Dhamayanthi, D. Gopi, Propagation of kink–antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes. Chin. Phys. B 23, 098703 (2014)

    Article  ADS  Google Scholar 

  46. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, Regarding the shallow water in an ocean via a Whitham–Broer–Kaup-like system: hetero-Bäcklund transformations, bilinear forms and \(M\) solitons. Chaos Solitons Fract. 162, 112486 (2022)

    Article  MATH  Google Scholar 

  47. N.S. Iskenderov, M.I. Ismailov, On the inverse scattering transform of a nonlinear evolution equation with 2 + 1 dimensions related to nonstrict hyperbolic systems. Nonlinearity 25, 1967 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. K.W. Chow, A class of exact, periodic solutions of nonlinear envelope equations. J. Math. Phys. 36, 4125–4137 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. E. Fan, Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method. J. Phys. A 35, 6853 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. A.M. Wazwaz, The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations. Appl. Math. Comput 216, 1304–1309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Y. Yildirim, A. Biswas, A.H. Kara, M. Ekici, S. Khan, M.R. Belic, Optical soliton perturbation and conservation law with Kudryashov’s refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity. Semicond. Phys. Quan. Electr. Optoelectron. 24, 64–70 (2021)

  52. A. Muniyappan, D. Hemamalini, E. Akila, V. Elakkiya, S. Anitha, S. Devadharshini, A. Biswas, Y. Yıldırım, H.M. Alshehri, Bright solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiber. Optik 254, 168612 (2022)

    Article  ADS  Google Scholar 

  53. A. Muniyappan, M. Sharmila, E. Kaviya Priya, S. Sumithra, A. Biswas, Y. Yıldırım, M. Aphane, S.P. Moshokoa, H.M. Alshehri, W-shaped chirp free and chirped bright, dark solitons for perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Proc. Easton. Acad. Sci. 72, 128–144 (2023)

  54. Z.Y. Yan, H.Q. Zhang, New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics. Phys. Lett. A 252, 291–296 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. X. Feng, Exploratory approach to explicit solution of nonlinear evolution equations. Int. J. Theor. Phys. 39, 207–222 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. B. Kaur, R.K. Gupta, Dispersion analysis and improved F-expansion method for space-time fractional differential equations. Nonlinear Dyn. 96, 837–852 (2019)

    Article  MATH  Google Scholar 

  57. S. El-Ganaini, E.M.E. Zayed, Short comment on “the extended simplest equation method and the (\(G^{\prime }/G - 1/G\))- expansion method’’. Optik 206, 164258 (2020)

    Article  ADS  Google Scholar 

  58. K. Manikandan, K. Sakkaravarthi, J.B. Sudharsan, D. Aravinthan, Deformation of optical solitons in a variable-coefficient nonlinear Schrödinger equation with three distinct \({\mathcal{P}}{\mathcal{T}}\)-symmetric potentials and modulated nonlinearities. Chaos 33, 063132 (2023)

  59. E.M.E. Zayed, M.E.M. Alngar, M.M. El-Horbaty, A. Biswas, A.H. Kara, M. Ekici, M. Asma, A.K. Alzahrani, M.R. Belic, Solitons and conservation laws in magneto-optic waveguides having parabolic-nonlocal law of refractive index. Phys. Lett. A 384, 126814 (2020)

Download references

Acknowledgements

AM and KM acknowledge the Center for Computational Modeling, Chennai Institute of Technology (CIT), India, vide Funding Number CIT/CCM/2023/RP-016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Muniyappan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniyappan, A., Ravichandran, R. & Manikandan, K. A bookshelf layer model for anti-kink and kink pair solitons in the ferroelectric liquid crystal. J Opt (2023). https://doi.org/10.1007/s12596-023-01488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01488-0

Keywords

Navigation