Skip to main content
Log in

Toxicity of selected insecticides to Trichogramma chilonis: Assessing their safety in the rice ecosystem

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Nine insecticides, namely, imidacloprid, thiamethoxam, chlorantraniliprole, clothianidin, pymetrozine, ethofenprox, BPMC, endosulfan, acephate, and the product Virtako® (Syngenta; chlorantraniliprole 20% + thiamethoxam 20%) were tested to determine their toxicity to the parasitoid Trichogramma chilonis using an insecticide-coated vial (scintillation) residue bioassay. All the insecticides tested showed different degrees of toxicity to the parasitoid. Thiamethoxam showed the highest toxicity to T. chilonis with an LC50 of 0.0014 mg a.i. l −1, followed by imidacloprid (0.0027 mg a.i. l −1). The LC50 values of acephate and endosulfan were 4.4703 and 1.8501 mg a.i. l −1, exhibiting low toxicity when compared with other insecticides tested. Thiamethoxam was found to be 3,195, 1,395 and 1,322 times more toxic than acephate, chlorantraniliprole and endosulfan, respectively, as revealed by the LC50 values to T. chilonis. Based on risk quotient, which is the ratio between the field-recommended doses and the LC50 of the beneficial, only chlorantraniliprole was found to be harmless to T. chilonis. The insecticides thiamethoxam, imidacloprid, Virtako®, ethofenprox and BPMC were found to be dangerous to the parasitoid. Since T. chilonis is an important egg parasitoid of leaf folders, reported to reduce the pest population considerably and often released augmentatively in rice IPM programs, the above noted dangerous chemicals should be avoided in the rice ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.

    CAS  Google Scholar 

  • Barlett, B. R. (1958). Laboratory studies on the selective aphicides favouring natural enemies of the spotted alfalfa aphid. Journal of Economic Entomology, 51, 374–378.

    Google Scholar 

  • Brunner, J. F., Dunley, J. E., Doerr, M. D., & Beers, E. H. (2001). Effect of pesticides on Colpoclypeus florus (Hymenoptera: Eulophidae) and Trichogramma platneri (Hymenoptera: Trichogrammatidae), parasitoids of leafrollers in Washington. Journal of Economic Entomology, 94, 1075–1084.

    PubMed  CAS  Google Scholar 

  • Campbell, P. J., Brown, K. C., Harrison, E. G., Bakker, F., Barrett, K. L., Candolfi, M., et al. (2000). A Hazard Quotient approach for assessing the risk to non-target arthropods from plant protection products under 91/414/EEC: hazard quotient trigger value proposal and validation. Anzeiger für Schädlingskunde, 73, 117–124.

    Google Scholar 

  • Danfa, A., Fall, B., & van der Valk, H. (1998). Acute toxicity tests with Bracon hebetor Say (Hymenoptera: Braconidae) using different locust control insecticides in the Sahel. In J. W. Everts, D. Mbaye, O. Barry, & W. Mullie (Eds.), Environmental side-effects of locust and grasshopper control (pp. 117–136). Dakar, Senegal: FAO.

    Google Scholar 

  • Demissie, G., Tefera, T., & Tadesse, A. (2008). Efficacy of Silicosec, filter cake and wood ash against the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) on three maize genotypes. Journal of Stored Products Research, 44, 227–231.

    Article  CAS  Google Scholar 

  • Fagan, W. F., Hakim, A. L., Ariawan, H., & Yuliyantinin, S. (1998). Interactions between biological control efforts and insecticide applications in tropical rice agroecosystems: the potential role of intraguild predation. Biological Control: Theory and Applications in Pest Management, 13, 121–126.

    Google Scholar 

  • Felton, J. C., Oomen, P. A., & Stevenson, J. H. (1986). Toxicity and hazard of pesticides to honeybees: Harmonization of test methods. Bee World, 67, 114–124.

    Google Scholar 

  • Finney, D. J. (1971). Probit analysis (3rd ed.). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Gangurde, S. (2007). Aboveground arthropod pest and predator diversity in irrigated rice (Oryza sativa L.) production systems of the Philippines. Journal of Tropical Agriculture, 45, 1–8.

    Google Scholar 

  • Hassan, S. A., Albert, R., Bigler, F., Blaisinger, P., Bogenschu, H., Boller, E., et al. (1987). Results of the third joint pesticide testing programme by the IOBC/WPRS-working group–“Pesticides and beneficial organisms”. Journal of Applied Entomology, 103, 92–107.

    CAS  Google Scholar 

  • Hassan, S. A., Hafes, B., Degrande, P. E., & Herai, K. (1998). The side-effects of pesticides on the egg parasitoid Trichogramma cacoeciae Marchal (Hym., Trichogrammatidae), acute dose-response and persistence tests. Journal of Applied Entomology, 122, 569–573.

    Article  CAS  Google Scholar 

  • Jepson, P. C. (1993). Ecological insights into risk analysis: the side effects of pesticides as a case study. The Science of the Total Environment, 134, 1547–1566.

    Article  Google Scholar 

  • Katti, G., Pasalu, I. C., Padmakumari, A. P., Padmavathi, C., Jhansilakshmi, V., Krishnaiah, V. N., et al. (2007). Biological control of insect pests of rice. Rajendranagar, India: Directorate of Rice Research Technical Bulletin No. 22.

    Google Scholar 

  • Lecorne, S., & Smilowitz, Z. (1980). Selective toxicity of primicarb, carbaryl and methamidophos to green peach aphid, Myzus persicae Sulzer, Coleomegrilla maculata (Timberlake) and Chrysopa oculata Say. Environmental Entomology, 9, 752–755.

    Google Scholar 

  • Lee, M. A. (2006). Characterization of the insecticidal properties of acetamiprid under field and laboratory conditions. Retrieved from http://www.lib.ncsu.edu/theses/available/etd-07102003-084728. Accessed 20 Oct 2008.

  • Michaud, J. P., & McKenzie, C. L. (2004). Safety of a novel insecticide, sucrose octanoate, to beneficial insects in Florida citrus. Florida Entomologist, 87, 6–9.

    Article  CAS  Google Scholar 

  • Milani, N., & Vedova, G. D. (2002). Decline in the proportion of mites resistant to fluvalinate in a population of Varroa destructor not treated with pyrethroids. Apidologie, 33, 417–422.

    Article  CAS  Google Scholar 

  • Mullie, W. C., & Everts, J. W. (1991). Uptake and elimination of [14C] deltamethrin by Oedothorax apicatus (Arachnida: Erigonidae) with respect to bioavailability. Pesticide Biochemistry and Physiology, 76, 55–69.

    Google Scholar 

  • Patel, H. M., Patel, P. U., Dodia, J. F., Patel, M. C., Korat, P. M., & Mehta, K. G. (1997). Effects of insecticides on natural enemies of major insect pests of paddy. Gujarat Agricultural University Research Journal, 22, 147–151.

    CAS  Google Scholar 

  • Peterson, R. K. D. (2006). Comparing ecological risks of pesticides: the utility of a Risk Quotient ranking approach across refinements of exposure. Pest Management Science, 62, 46–56.

    Article  PubMed  CAS  Google Scholar 

  • Peveling, R., & Ely, S. O. (2006). Side-effects of botanical insecticides derived from Meliaceae on coccinellid predators of the date palm scale. Crop Protection, 25, 1253–1258.

    Article  Google Scholar 

  • Purcell, M. F., Stark, J. D., & Messing, R. H. (1994). Effects of insecticides on three Tephritid fruit flies and associated braconid parasitoids in Hawaii. Journal of Economic Entomology, 87, 1455–1462.

    CAS  Google Scholar 

  • Rola, A. C., & Pingali, P. L. (1993). Pesticides, rice productivity and farmers healthan economic assessment pp. 9–17. Los Banos the Philippines: World Resources Institute and International Rice Research Institute.

    Google Scholar 

  • Senthilkumar, C. M., & Regupathy, A. (2005). Risk assessment of neonicotinoids applied to coffee ecosystem. International Pest Control, 47, 82–87.

    Google Scholar 

  • Sharma, D. (2005). DuPont Technical Bulletin. Retrieved from http://www.2.dupont.com/Production_Agriculture/en_US/Tech. Bulletin. pdf. Accessed 12 Nov 2008.

  • Stark, J. D., Jepson, P. C., & Mayer, D. F. (1995). Limitations to use of topical toxicity data for predictions of pesticide side effects in the field. Journal of Economic Entomology, 89, 1081–1088.

    Google Scholar 

  • Takada, Y., Kawamura, S., & Tanaka, T. (2001). Effects of various insecticides on the development of the egg parasitoid Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology, 94, 1340–1343.

    Article  PubMed  CAS  Google Scholar 

  • Williams, L., & Price, L. (2004). A space-efficient contact toxicity bioassay for minute Hymenoptera, used to test the effects of novel and conventional insecticides on the egg parasitoids Anaphes iole and Trichogramma pretiosum. BioControl, 49, 163–185.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support received from Syngenta India Ltd., for this project. We also wish to thank Tamil Nadu Agricultural University (TNAU) for providing the facilities to conduct the research successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stanley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preetha, G., Stanley, J., Suresh, S. et al. Toxicity of selected insecticides to Trichogramma chilonis: Assessing their safety in the rice ecosystem. Phytoparasitica 37, 209–215 (2009). https://doi.org/10.1007/s12600-009-0031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-009-0031-x

Keywords

Navigation