Skip to main content
Log in

Large-scale synthesis of nickel sulfide micro/nanorods via a hydrothermal process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Rhombohedral-phase NiS micro/nanorods were synthesized on a large scale through a hydrothermal method using NiCl2·6H2O and thiourea crystals as starting precursors. Recrystallized thiourea was observed to play an important role in the formation of micro/nanosized rods and flower-like structures. The molar ratio and reaction temperature of the precursors influenced the morphology and phase of NiS products. Pure rhombohedral NiS micro/nanorods were obtained on a large scale when the molar ratio between NiCl2·6H2O and thiourea crystals was fixed at 2:1, and the mixture was heated at 250°C for 5 h. Flower-like NiS nanostructures were formed when the molar ratio between NiCl2·6H2O and thiourea crystals was maintained at 1:1. The Raman and Fourier-transform infrared (FTIR) spectra of the as-prepared rhombohedral NiS micro/nanorods were collected, and their magnetic properties were investigated. The results showed that the FTIR absorption peaks of the as-prepared product are located at 634 cm−1 and their Raman peaks are located at 216 and 289 cm−1; the as-prepared NiS micro/nanorods exhibited weak ferromagnetic behavior due to the size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S. Ryu, C.W. Ha, S.Y. Ji, I.S. Ahn, J.H. Ahn, H.J. Ahn, and K.W. Kim, Electrochemical properties of the NiS powder prepared by co-precipitation method for lithium secondary battery, J. Nanosci. Nanotechnol., 14(2014), No. 10, p. 7943.

    Article  Google Scholar 

  2. J.Q. Yang, X.C. Duan, W. Guo, D. Li, H.L. Zhang, and W.J. Zheng, Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors, Nano Energy, 5(2014), p. 74.

    Article  Google Scholar 

  3. X.Y. Yan, X.L. Tong, L. Ma, Y.M. Tian, Y.S. Cai, C.W. Gong, M.G. Zhang, and L.P. Liang, Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties, Mater. Lett., 124(2014), p. 133.

    Article  Google Scholar 

  4. S.C. Yan, Y. Shi, L.T. Sun, Z.D. Xiao, B. Sun, and X. Xu, Controlled synthesis of NiS nanoparticle/CdS nanowire heterostructures via solution route and their optical properties, Mater. Sci. Eng. B, 178(2013), No. 1, p. 109.

    Article  Google Scholar 

  5. Y.B. Li, H.F. Wang, H.M. Zhang, P.R. Liu, Y. Wang, W.Q. Fang, H.Q. Yang, Y. Li, and H.J. Zhao, A {0001} faceted single crystal NiS nanosheet electrocatalyst for dye-sensitised solar cells: sulfur-vacancy induced electrocatalytic activity, Chem. Commun., 50(2014), p. 5569.

    Article  Google Scholar 

  6. C.J. Tang, C.H. Zang, J.F. Su, D.M. Zhang, G.H. Li, Y.S. Zhang, and K. Yu, Structure and magnetic properties of flower-like a-NiS nanostructures, Appl. Surf. Sci., 257(2011), No. 8, p. 3388.

    Article  Google Scholar 

  7. H.C. Ruan, Y.F. Li, H.Y. Qiu, and M.D. Wei, Synthesis of porous NiS thin films on Ni foam substrate via an electrodeposition route and its application in lithium-ion batteries, J. Alloys Compd., 588(2014), p. 357.

    Article  Google Scholar 

  8. Z.Q. Wang, X. Li, Y. Yang, Y.J. Cui, H.G. Pan, Z.Y. Wang, B.L. Chen, and G.D. Qian, Highly dispersed ß-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode, J. Mater. Chem. A, 2(2014), p. 7912.

    Article  Google Scholar 

  9. S.B. Ni, X.L. Yang, and T. Li, Fabrication of a porous NiS/Ni nanostructured electrode via a dry thermal sulfuration method and its application in a lithium ion battery, J. Mater. Chem., 22(2012), p. 2395.

    Article  Google Scholar 

  10. Y. Wang, Q.S. Zhu, L. Tao, and X.W. Su, Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries, J. Mater. Chem., 21(2011), p. 9248.

    Article  Google Scholar 

  11. K. Aso, A. Hayashi, and M. Tatsumisago, Preparation conditions of NiS active material in high-boiling solvents for all-solid-state lithium secondary batteries, New J. Chem., 38(2014), p. 1731.

    Article  Google Scholar 

  12. H.M. Chuang, C.T. Li, M.H. Yeh, C.P. Lee, R. Vittal, and K.C. Ho, A coral-like film of Ni@NiS with core–shell particles for the counter electrode of an efficient dye-sensitized solar cell, J. Mater. Chem. A, 2(2014), p. 5816.

  13. H.C. Sun, D. Qin, S.Q. Huang, X.Z. Guo, D.M. Li, Y.H. Luo, and Q.B. Meng, Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique, Energy Environ. Sci., 4(2011), p. 2630.

    Article  Google Scholar 

  14. J.L. Meng, Z.M. Yu, Y. Li, and Y.D. Li, PdS-modified CdS/NiS composite as an efficient photocatalyst for H2 evolution in visible light, Catal. Today, 225(2014), p. 136.

    Article  Google Scholar 

  15. Z.H. Chen, P. Sun, B. Fan, Z.G. Zhang, and X.M. Fang, In situ template-free ion-exchange process to prepare visible-light-active g-C3N4/NiS hybrid photocatalysts with enhanced hydrogen evolution activity, J. Phys. Chem. C, 118(2014), No. 15, p. 7801.

    Article  Google Scholar 

  16. Q. Pan, J. Xie, S.Y. Liu, G.S. Cao, T.J. Zhu, and X.B. Zhao, Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties, RSC Adv., 3(2013), p. 3899.

    Article  Google Scholar 

  17. Q. Pan, J. Xie, T. Zhu, G. Cao, X. Zhao, and S. Zhang, Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties, Inorg. Chem., 53(2014), No. 7, p. 3511.

    Article  Google Scholar 

  18. Y.H. Zhang, L. Guo, L. He, K. Liu, C.P. Chen, Q. Zhang, and Z.Y. Wu, Controlled synthesis of high-quality nickel sulfide chain-like tubes and echinus-like nanostructures by a solution chemical route, Nanotechnology, 18(2007), No. 48, p. 485609.

    Article  Google Scholar 

  19. X.C. Jiang, Y. Xie, J. Lu, L.Y. Zhu, W. He, and Y.T. Qian, A hydrogen bond-template route to nickel sulfide submicrotubes, Adv. Mater., 13(2001), p. 1278.

    Article  Google Scholar 

  20. W.Q. Zhang, L.Q. Xu, K.B. Tang, F.Q. Li, and Y.T. Qian, Solvothermal synthesis of NiS 3D nanostructures, Eur. J. Inorg. Chem., 2005(2005), No. 4, p. 653.

    Article  Google Scholar 

  21. L.W. Mi, Y.F. Chen, W.T. Wei, W.H. Chen, H.W. Hou, and Z. Zheng, Large-scale urchin-like micro/nano-structured NiS: controlled synthesis, cation exchange and lithium-ion battery applications, RSC Adv., 3(2013), p. 17431.

    Article  Google Scholar 

  22. H.B. Li, L.L. Chai, X.Q. Wang, X.Y. Wu, G.C. Xi, Y.K. Liu, and Y.T. Qian, Hydrothermal growth and morphology modification of ß-NiS three-dimensional flowerlike architectures, Cryst. Growth Des., 7(2007), No. 9, p. 1918.

    Article  Google Scholar 

  23. H. Zhou, B.L. Lv, D. Wu, and Y.H. Sun, Hydrothermal synthesis and characterization of NiS flower-like architectures, Particuology, 10(2012), No. 6, p. 783.

    Article  Google Scholar 

  24. Z.C. Wu, C. Pan, T.W. Li, G.J. Yang, and Y. Xie, Formation of uniform flowerlike patterns of NiS by macrocycle polyamine assisted solution-phase route, Cryst. Growth Des., 7(2007), No. 12, p. 2454.

    Article  Google Scholar 

  25. F.M. Zhan, B.Y. Geng, Y.J. Guo, and L. Wang, One-step synthesis of hierarchical carnation-like NiS superstructures via a surfactant-free aqueous solution route, J. Alloys Compd., 482(2009), No. 1-2, p. L1.

    Article  Google Scholar 

  26. P.F. Yang, B. Song, R. Wu, Y.F. Zheng, Y.F. Sun, and J.K. Jian, Solvothermal growth of NiS single-crystalline nanorods, J. Alloys Compd., 481(2009), No. 1-2, p. 450.

    Article  Google Scholar 

  27. A. Ghezelbash, M.B. Sigman, and B.A. Korgel, Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms, Nano Lett., 4(2004), No. 4, p. 537.

    Article  Google Scholar 

  28. J. Yang, X. Duan, Q. Qin, and W. Zheng, Solvothermal synthesis of hierarchical flower-like ß-NiS with excellent electrochemical performance for supercapacitors, J. Mater. Chem. A, 1(2013), p. 7880.

    Article  Google Scholar 

  29. M. Salavati-Niasari, G. Banaiean-Monfared, H. Emadi, and M. Enhessari, Synthesis and characterization of nickel sulfide nanoparticles via cyclic microwave radiation, C. R. Chim., 16(2013), No. 10, p. 929.

    Article  Google Scholar 

  30. K. Nithima, O. Areeporn, K. Jinda, and O. Makoto, Formation of MnS- and NiS-montmorillonites by solid-solid reactions, Appl. Clay Sci., 43(2009), p. 238.

    Article  Google Scholar 

  31. J.H. Jiang, R. Yu, R. Yi, W.Q. Qin, G.Z. Qiu, and X.H. Liu, Biomolecule-assisted synthesis of flower-like NiS microcrystals via a hydrothermal process, J. Alloys Compd., 493(2010), No. 1-2, p. 529.

    Article  Google Scholar 

  32. L.L. Wang, Y.C. Zhu, H.B. Li, Q.W. Li, and Y.T. Qian, Hydrothermal synthesis of NiS nanobelts and NiS2 microspheres constructed of cuboids architectures, J. Solid State Chem., 183(2010), No. 1, p. 223.

    Article  Google Scholar 

  33. P.T. Zhao, Q.M. Zeng, and K.X. Huang, Fabrication of ß-NiS hollow sphere consisting of nanoflakes via a hydrothermal process, Mater. Lett., 63(2009), No. 2, p. 313.

    Article  Google Scholar 

  34. Z.Y. Meng, Y.Y. Peng, W.C. Yu, and Y.T. Qian, Solvothermal synthesis and phase control of nickel sulfides with different morphologies, Mater. Chem. Phys., 74(2002), No. 2, p. 230.

    Article  Google Scholar 

  35. S.H. Yu and M. Yoshimura, Fabrication of powders and thin films of various nickel sulfides by soft solution-processing routes, Adv. Funct. Mater., 12(2002), No. 4, p. 277.

    Article  Google Scholar 

  36. X.P. Shen, J.Q. Sun, G.X. Wang, J.S. Park, and K.M. Chen, A facile single-source approach to urchin-like NiS nanostructures, Mater. Res. Bull., 45(2010), No. 7, p. 766.

    Article  Google Scholar 

  37. Q.T. Pan, K. Huang, S.B. Ni, F. Yang, and D.Y. He, Synthesis of flower- and rod-like nickel sulfide nanostructures by an organic-free hydrothermal process, Mater. Res. Bull., 43(2008), No. 6, p. 1440.

    Article  Google Scholar 

  38. J.H. Wang, Z. Cheng, J.L. Brédas, and M.L. Liu, Electronic and vibrational properties of nickel sulfides from first principles, J. Chem. Phys., 127(2007), p. 214705.

    Article  Google Scholar 

  39. D.W. Bishop, P.S. Thomas, and A.S. Ray, Micro Raman characterization of nickel sulfide inclusions in toughened glass, Mater. Res. Bull., 35(2000), No. 7, p. 1123.

    Article  Google Scholar 

  40. H.T. Zhang, G. Wu, and X.H. Chen, Synthesis and magnetic properties of NiS1+x nanocrystallines, Mater. Lett., 59(2005), No. 28, p. 3728.

    Article  Google Scholar 

  41. J.T. Sparks and T. Komoto, Metal-to-Semiconductor Transition in Hexagonal NiS, Rev. Mod. Phys., 40(1968), p. 752.

    Article  Google Scholar 

  42. C. Dewitt, B. Dreyfus, and P.D. de Gennes, Low Temperature Physics, Gordon and Beach, New York, 1962, p. 413.

    Google Scholar 

  43. M. Salavati-Niasari, F. Davar, and M. Mazaheri, Synthesis, characterization and magnetic properties of NiS1+x nanocrystals from [bis(salicylidene)nickel(II)] as new precursor, Mater. Res. Bull., 44(2009), No. 12, p. 2246.

    Article  Google Scholar 

  44. F. Cao, R.X. Liu, L. Zhou, S.Y. Song, Y.Q. Lei, W.D. Shi, F.Y. Zhao, and H.J. Zhang, One-pot synthesis of flowerlike Ni7S6 and its application in selective hydrogenation of chloronitrobenzene, J. Mater. Chem., 20(2010), p. 1078.

    Article  Google Scholar 

  45. R.H. Kodama, S.A. Makhlouf, and A.E. Berkowitz, Finite size effects in antiferromagnetic NiO nanoparticles, Phys. Rev. Lett., 79(1997), p. 1393.

    Article  Google Scholar 

  46. A. Sobhani and M. Salavati-Niasari, Synthesis, characterization, optical and magnetic properties of a nickel sulfide series by three different methods, Superlattices Microstruct., 59(2013), p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-li Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Pf., Han, Xy., Zhou, C. et al. Large-scale synthesis of nickel sulfide micro/nanorods via a hydrothermal process. Int J Miner Metall Mater 22, 762–769 (2015). https://doi.org/10.1007/s12613-015-1132-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1132-9

Keywords

Navigation