Skip to main content
Log in

Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Iron carbon agglomerates (ICA) are used to realize low-carbon blast furnace ironmaking. In this study, the central composite design based on response surface methodology was used to synergistically optimize the compressive strength, reactivity, and post-reaction strength of ICA. Results show that the iron ore addition ratio significantly influences the compressive strength, reactivity, and post-reaction strength of ICA. The iron ore addition ratio and carbonization temperature or the iron ore addition ratio and carbonization time exert significant interaction effects on the compressive strength and reactivity of ICA, but it has no interaction effects on the post-reaction strength of ICA. In addition, the optimal process parameters are as follows: iron ore addition ratio of 15.30wt%, carbonization temperature of 1000°C, and carbonization time of 4.27 h. The model prediction results of compressive strength, reactivity, and post-reaction strength are 4026 N, 55.03%, and 38.24%, respectively, which are close to the experimental results and further verify the accuracy and reliability of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEA(2020), CO2 Emissions from Fuel Combustion [2021-02-15]. https://www.iea.org/statistics/topics/CO2emissions

  2. H.T. Wang, M.S. Chu, W. Zhao, Z.G. Liu, and J. Tang, Influence of iron ore addition on metallurgical reaction behavior of iron coke hot briquette, Metall. Mater. Trans. B, 50(2019), No. 1, p. 324.

    Article  CAS  Google Scholar 

  3. Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo, Numerical study of the reduction process in an oxygen blast furnace, Metall. Mater. Trans. B, 47(2016), No. 1, p. 467.

    Article  CAS  Google Scholar 

  4. W.Q. Xu, W.J. Cao, T.Y. Zhu, Y.J. Li, and B. Wan, Material flow analysis of CO2 emissions from blast furnace and basic oxygen furnace steelmaking systems in China, Steel Res. Int., 86(2015), No. 9, p. 1063.

    Article  CAS  Google Scholar 

  5. J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713.

    Article  CAS  Google Scholar 

  6. M. Naito, A. Okamoto, K. Yamaguchi, T. Yamaguchi, and Y. Inoue, Improvement of blast furnace reaction efficiency by use of high reactivity coke, Tetsu-to-Hagané, 87(2001), No. 5, p. 357.

    Article  CAS  Google Scholar 

  7. M. Naito, A. Okamoto, K. Yamaguchi, T. Yamaguchi, and Y. Inoue, Improvement of blast furnace reaction efficiency by temperature control of thermal reserve zone, Nippon Steel Tech. Rep., 2006, No. 94, p. 103.

  8. S. Nomura, K. Higuchi, K. Kunitomo, and M. Naito, Reaction behavior of formed iron coke and its effect on decreasing thermal reserve zone temperature in blast furnace, ISIJ Int., 50(2010), No. 10, p. 1388.

    Article  CAS  Google Scholar 

  9. M. Naito, S. Nomura, and K. Kato, Development of production and utilization technology of coke with high strength and high reactivity, Tetsu-to-Hagané, 96(2010), No. 5, p. 17.

    Article  Google Scholar 

  10. S. Nomura, H. Terashima, E. Sato, and M. Naito, Some fundamental aspects of highly reactive iron coke production, ISIJ Int., 47(2007), No. 6, p. 823.

    Article  CAS  Google Scholar 

  11. T. Anyashiki, H. Fujimoto, T. Yamamoto, T. Sato, H. Matsuno, M. Sato, and K. Takeda, Basic examination of briquetting technology for ferro-coke process on 0.5 t/d bench scale plant, Tetsu-to-Hagané, 101(2015), No. 10, p. 515.

    Article  Google Scholar 

  12. H.T. Wang, M.S. Chu, W. Zhao, R. Wang, Z.G. Liu, and J. Tang, Fundamental research on iron coke hot briquette — a new type burden used in blast furnace, Ironmaking Steelmaking, 43(2016), No. 8, p. 571.

    Article  CAS  Google Scholar 

  13. H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, J. Tang, and Z.W. Ying, Effects of coal and iron ore blending on metallurgical properties of iron coke hot briquette, Powder Technol., 328(2018), p. 318.

    Article  CAS  Google Scholar 

  14. A. Uchida, Y. Yamazaki, S. Matsuo, Y. Saito, Y. Matsushita, H. Aoki, and M. Hamaguchi, Effect of iron ore reduction on ferrocoke strength with hyper-coal addition, ISIJ Int., 105(2016), No. 12, p. 2132.

    Article  Google Scholar 

  15. K. Nishioka, Y. Ujisawa, and T. Inada, Effect of large quantity of ferrocoke charging on reduction of reducing agent rate of blast furnace, Tetsu-to-Hagané, 100(2014), No. 11, p. 1347.

    Article  CAS  Google Scholar 

  16. S.Z. Shi, Q. Zheng, X.G. Bi, Y.G. Mao, G.E. Wang, and Y.H. Luo, Model-based ferro-coke strength prediction and analysis of its control measures, J. Taiyuan Univ. Technol., 48(2017), No. 1, p. 36.

    Google Scholar 

  17. E. Hosseini, F. Rashchi, and A. Ataie, Ti leaching from activated ilmenite-Fe mixture at different milling energy levels, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1263.

    Article  CAS  Google Scholar 

  18. N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durao, C. Guimaraes, and F. Margarido, Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 11.

    Article  CAS  Google Scholar 

  19. Y.T. Wang, S.L. Jiang, H.L. Wang, and H.Y. Bie, A mucoadhesive, thermoreversible in situ nasal gel of geniposide for neurodegenerative diseases, Plos One, 12(2017), No. 12, p. 1.

    Google Scholar 

  20. Z.J. Yang, K.K. Wang, and Y. Yang, Optimization of ECAP-RAP process for preparing semisolid billet of 6061 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 792.

    Article  CAS  Google Scholar 

  21. M. Mondal, A. Ghosh, K. Gayen, G. Halder, and O.N. Tiwari, Carbon dioxide bio-fixation by Chlorella sp. BTA 9031 towards biomass and lipid production: Optimization using Central Composite Design approach, J. CO2 Util., 22(2017), p. 317.

    Article  CAS  Google Scholar 

  22. L. Kun, L.L. Zhang, L. Wei, C.S. Okinda, and M.X. Shen, Optimization of compression formulation and load of food-grade tracers for grain traceability using central composite design, Int. J. Agric. Biol. Eng., 10(2017), No. 6, p. 221.

    Google Scholar 

  23. M.D. Turan, Optimization of selective copper extraction from chalcopyrite concentrate in presence of ammonium persulfate and ammonium hydroxide, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 946.

    Article  CAS  Google Scholar 

  24. S.N.A.M. Hassan, M.A.M. Ishak, and K. Ismail, Optimizing the physical parameters to achieve maximum products from co-liquefaction using response surface methodology, Fuel, 207(2017), p. 102.

    Article  CAS  Google Scholar 

  25. D. Singh, P.M. Pandey, and D. Kalyanasundaram, Optimization of pressure-less microwave sintering of Ti6Al4V by response surface methodology, Mater. Manuf. Process., 33(2018), No. 16, p. 1835.

    Article  CAS  Google Scholar 

  26. China National Standardization Administration Committee, Chinese National Standard GB/T 4000-2017: Determination of Coke Reactivity Index (CRI) and Coke Strength after Reaction (CSR), Standards Press of China, 2017.

  27. S.K. Singh, P. Singha, and K. Muthukumarappan, Modeling and optimizing the effect of extrusion processing parameters on nutritional properties of soy white flakes-based extrudates using response surface methodology, Anim. Feed. Sci. Technol., 254(2019), art. No. 114197.

  28. S. Kim, S.C. Ko, Y.S. Kim, S.K. Ha, H.Y. Park, Y. Park, and S.H. Lee, Determination of Curcuma longa L. (Turmeric) leaf extraction conditions using response surface methodology to optimize extraction yield and antioxidant content, J. Food Quality, 2019(2019), p. 1.

    CAS  Google Scholar 

  29. X.R. Zhang, Z.H. Liu, X. Fan, X. Lian, and C.Y. Tao, Optimization of reaction conditions for the electroleaching of manganese from low-grade pyrolusite, Int. J. Miner. Metall. Mater., 22(2015), No. 11, p. 1121.

    Article  CAS  Google Scholar 

  30. J.Jiang, Y.P. Chen, J.Z. Cao, and C.T. Mei, Improved hydrophobicity and dimensional stability of wood treated with paraffin/acrylate compound emulsion through response surface methodology optimization, Polymers, 12(2020), No. 1, art. No. 86.

  31. B.D. Flores, A. Guerrero, I.V. Flores, A.G. Borrego, M.A. Diez, E. Osorio, and A.C.F. Vilela, On the reduction behavior, structural and mechanical features of iron ore-carbon briquettes, Fuel Process. Technol., 155(2017), p. 238.

    Article  CAS  Google Scholar 

  32. China National Standardization Administration Committee, Chinese National Standard GB/T 1996—2017: Coke for Metallurgy, Standards Press of China, 2017.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China-Liaoning Joint Funds (No. U1808212), the National Natural Science Foundation of China (No. 52074080), the Fundamental Research Funds of the Central Universities of China (No. N182504010), and Xingliao Talent Plan (No. XLYC1902118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-gen Liu or Man-sheng Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Jw., Liu, Zg., Chu, Ms. et al. Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology. Int J Miner Metall Mater 28, 1917–1928 (2021). https://doi.org/10.1007/s12613-020-2188-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2188-8

Keywords

Navigation