Skip to main content

Advertisement

Log in

Investigation of the Structural, Electronic and Mechanical Properties of Type-VIII Ba8Si46 Clathrate under High-Pressure through First-Principles

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

By means of density functional theory (DFT) calculations, we have systematically investigated the effect of hydrostatic pressure on the structural, electronic and elastic properties of barium-doped silicon clathrate Ba8Si46 in the type-VIII structure (α phase). Physical properties are calculated under different conditions of pressure (0 GPa to 45 GPa) using the GGA-PBE functional. Those calculations have been performed using the Cambridge serial total energy package CASTEP within the Materials Studio package. Electronic properties have shown that type-VIII Ba8Si46 has metal-like properties with a fundamental bandgap of 1 eV. Under pressure the fundamental bandgap increases slightly and the positions of the valence band maximum VBM and the conduction band minimum CBM remain unchanged when pressure is changed from 0 to 25 GPa, but when pressure is set to 30 GPa the CBM is transited from its initial position (Γ-H segment) towards the Γ(0,0,0) point, this indicates that the bandgap nature of this material can be tuned through strain engineering. We found that the compound is mechanically stable under the pressure range and might be unstable or collapse when pressure exceeds 44 GPa. These findings need to be confirmed experimentally through synthesis, a comparison with the type-I and the guest-free counterparts has exhibited promising features for the type-VIII Ba8Si46.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kasper JS, Hagenmuller P, Pouchard M, Cros C (1965) Clathrate structure of silicon Na8Si46 and NaxSi136 (x< 11). Science 150(3704):1713–1714

    Article  CAS  Google Scholar 

  2. Cros C, Pouchard M, Hagenmuller P (1970) Sur une nouvelle famille de clathrates minéraux isotypes des hydrates de gaz et de liquides. Interprétation des résultats obtenus. J Solid State Chem 2(4):570–581

    Article  CAS  Google Scholar 

  3. Bentien A et al (2004) Thermal conductivity of thermoelectric clathrates. Phys Rev B 69(4)

  4. Dolyniuk J-A, Owens-Baird B, Wang J, Zaikina JV, Kovnir K (2016) Clathrate thermoelectrics. Materials Science and Engineering: R: Reports 108:1–46

    Article  Google Scholar 

  5. Martinez AD, Krishna L, Baranowski LL, Lusk MT, Toberer ES, Tamboli AC (2013) Synthesis of group IV clathrates for photovoltaics. Photovoltaics, IEEE Journal of 3(4):1305–1310

    Article  Google Scholar 

  6. Connétable D, Blase X (2004) Electronic and superconducting properties of silicon and carbon clathrates. Appl Surf Sci 226(1–3):289–297

    Article  Google Scholar 

  7. Connétable D et al (2003) Superconductivity in Dopedsp3Semiconductors: The Case of the Clathrates. Phys Rev Lett 91(24)

  8. Yang J, Tse JS (2013) Silicon clathrates as anode materials for lithium ion batteries? J Mater Chem A 1(26):7782

    Article  CAS  Google Scholar 

  9. Yamanaka S (2010) Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity. Dalton Trans 39(8):1901–1915

    Article  CAS  Google Scholar 

  10. Gryko J, McMillan PF, Marzke RF, Ramachandran GK, Patton D, Deb SK, Sankey OF (2000) Low-density framework form of crystalline silicon with a wide optical band gap. Phys Rev B 62(12):R7707–R7710

    Article  CAS  Google Scholar 

  11. Nolas GS, Kendziora CA, Gryko J, Dong J, Myles CW, Poddar A, Sankey OF (2002) Raman scattering study of stoichiometric Si and Ge type II clathrates. J Appl Phys 92(12):7225–7230

    Article  CAS  Google Scholar 

  12. Kume T, Ohashi F, Sakai K, Fukuyama A, Imai M, Udono H, Ban T, Habuchi H, Suzuki H, Ikari T, Sasaki S, Nonomura S (2016) Thin film of guest-free type-II silicon clathrate on Si(111) wafer. Thin Solid Films 609:30–34

    Article  CAS  Google Scholar 

  13. Norouzzadeh P, Krasinski JS, Myles CW, Vashaee D (2015) Type VIII Si based clathrates: prospects for a giant thermoelectric power factor. Phys Chem Chem Phys 17(14):8850–8859

    Article  CAS  Google Scholar 

  14. Norouzzadeh P, Myles CW, Vashaee D (2013) Prediction of a large number of electron pockets near the band edges in type-VIII clathrate Si46 and its physical properties from first principles. J Phys Condens Matter 25(47):475502

    Article  Google Scholar 

  15. Norouzzadeh P, Myles CW, Vashaee D (2014) Prediction of giant thermoelectric power factor in type-VIII clathrate Si46. Sci Rep 4:7028

    Article  CAS  Google Scholar 

  16. Hohenberg P, Kohn W (1964) Inhomogeneous Electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  17. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  18. Clark SJ et al (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie 220(5/6/2005)

  19. Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43(20):1494–1497

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  21. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  22. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl Math 6(1):76–90

    Article  Google Scholar 

  23. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322

    Article  Google Scholar 

  24. Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24(109):23–26

    Article  Google Scholar 

  25. Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24(111):647–656

    Article  Google Scholar 

  26. Mahammedi NA, Ferhat M, Tsumuraya T, Chikyow T (2017) Prediction of optically-active transitions in type-VIII guest-free silicon clathrate Si46: a comparative study of its physical properties with type-I counterpart through first-principles. J Appl Phys 122(20):205103

    Article  Google Scholar 

  27. Norouzzadeh P, Myles CW, Vashaee D (2014) Structural, electronic, phonon and thermodynamic properties of hypothetical type-VIII clathrates Ba8Si46 and Ba8Al16Si30 investigated by first principles. J Alloys Compd 587:474–480

    Article  CAS  Google Scholar 

  28. Shimizu H, Takeuchi Y, Kume T, Sasaki S, Kishimoto K, Ikeda N, Koyanagi T (2009) Raman spectroscopy of type-I and type-VIII silicon clathrate alloys Sr8AlxGa16−xSi30. J Alloys Compd 487(1–2):47–51

    Article  CAS  Google Scholar 

  29. Yamanaka S, Enishi E, Fukuoka H, Yasukawa M (2000) High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46. Inorg Chem 39(1):56–58

    Article  CAS  Google Scholar 

  30. Li DC, Fang L, Deng SK, Kang KY, Shen LX, Wei WH, Ruan HB (2012) Structural and electronic properties of type-I and type-VIII Ba8Ga16Sn30 clathrates under compression. Phys B Condens Matter 407(8):1238–1243

    Article  CAS  Google Scholar 

  31. Kim DY, Kume T (2017) Si allotropes and group IV clathrates investigated under high pressures. Japanese Journal of Applied Physics 56(5S3):05FA07

    Article  Google Scholar 

  32. Leoni, S., W. Carrillo-Cabrera, and Y. Grin, Modelling of the α (clathrate VIII) ⇌ β (clathrate I) phase transition in Eu8Ga16Ge30. J Alloys Compd, 2003. 350(1–2): p. 113–122

    Article  CAS  Google Scholar 

  33. Zhang W, Ge NN, Zou YT, Zeng ZY, Cai LC (2015) Influence of missing guest and host atoms on the mechanical and electronic properties of type-I clathrate compound Ba8Si46. J Alloys Compd 653:77–87

    Article  CAS  Google Scholar 

  34. Tse JS et al (2002) Structural Stability and Phase Transitions inK8Si46Clathrate under High Pressure. Phys Rev Lett 89(19)

  35. Nolas GS (2014) The Physics and Chemistry of Inorganic Clathrates. Springer Series in Materials Science 199:341

    Google Scholar 

  36. Ghebouli B, Ghebouli MA, Bouhemadou A, Fatmi M, Khenata R, Rached D, Ouahrani T, Bin-Omran S (2012) Theoretical prediction of the structural, elastic, electronic, optical and thermal properties of the cubic perovskites CsXF3 (X = ca, Sr and hg) under pressure effect. Solid State Sci 14(7):903–913

    Article  CAS  Google Scholar 

  37. <Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp.pdf>

  38. Fine ME, Brown LD, Marcus HL (1984) Elastic constants versus melting temperature in metals. Scr Metall 18(9):951–956

    Article  CAS  Google Scholar 

  39. Born M, Oppenheimer R (1927) Zur Quantentheorie der Molekeln. Ann Phys 389(20):457–484

    Article  Google Scholar 

  40. San-Miguel A, Toulemonde P (2005) High-pressure properties of group IV clathrates. High Pressure Res 25(3):159–185

    Article  CAS  Google Scholar 

  41. Myles CW, Dong J, Sankey OF (2001) Structural and electronic properties of tin clathrate materials. Phys Rev B 64(16)

  42. Sin’ko GV, Smirnov NA (2002) Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J Phys Condens Matter 14(29):6989

    Article  Google Scholar 

  43. Norouzzadeh P, Myles CW (2016) A first-principles lattice dynamical study of type-I, type-II, and type-VIII silicon clathrates. J Mater Sci 51(9):4538–4548

    Article  CAS  Google Scholar 

  44. Connétable D et al (2001) Tailoring Band Gap and Hardness by Intercalation: Anab initioStudy ofI8@Si−46and Related Doped Clathrates. Phys Rev Lett 87(20)

  45. Perottoni CA, Jornada JAHD (2001) The carbon analogues of type-I silicon clathrates. Journal of Physics: Condensed Matter 13(26):5981

    Google Scholar 

  46. Norouzzadeh P, Krasinski JS, Tadano T (2017) Thermal conductivity of type-I, type-II, and type-VIII pristine silicon clathrates: A first-principles study. Phys Rev B 96(24)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassim Ahmed Mahammedi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahammedi, N.A., Ferhat, M. Investigation of the Structural, Electronic and Mechanical Properties of Type-VIII Ba8Si46 Clathrate under High-Pressure through First-Principles. Silicon 12, 381–391 (2020). https://doi.org/10.1007/s12633-019-00145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00145-1

Keywords

Navigation