Skip to main content
Log in

An Improved Analog/RF and Linearity Performances with Small-Signal Parameter Extraction of Virtually Doped Recessed Source/Drain Dopingless Junctionless Transistor for Radio-Frequency Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A small-signal radio-frequency (RF) parameters extraction model along with analog/RF and linearity distortion performance analysis are realized for virtually doped (VD) recessed source/drain dopingless junctionless transistor (Re S/D DLJLT) via 3-D device simulations. A simple and accurate RF non-quasi-static (NQS) model is developed to directly extract the extrinsic and intrinsic parasitic components through Y-parameters in OFF and ON-state respectively. Furthermore, direct comparison of DC, analog/RF, linearity figure of merits (FOMs), and Y-parameter extractions are made with recessed source/drain junction transistor (Re S/D JT) with identical threshold voltage (Vth) and device dimensions at GHz frequency range. Virtual doping, due to charge-plasma (CP) concept, provides N+ source/drain (S/D) regions by choosing a most convenient metal work function (WF = 3.9 eV; Hafnium) at S/D. Re S/D provides reduced series resistance without an increase in gate-drain Miller capacitance leading to improved drive current. In addition, the present device uses an intrinsic channel and does not require to be doped at S/D resulting in dopingless junctionless transistor (DLJLT). For both devices, gate length (L) is taken as 30 nm, which separated into control gate (L1) and screen gate (L2) and 3-D simulations are carried out by varying control to screen gate length ratios (CSLR) to obtain optimum results. Obtained results disclose that Re S/D DLJLT provides considerably improved performances in terms of DC, analog/RF, linearity, transient, and small-signal admittance parameters over Re S/D JT due to improved drive current and reduced short channel effects (SCEs). Accordingly, for high-performance RF applications, Re S/D DLJLT may be preferred over Re S/D JT due to significantly enhanced cut-off frequency (up to 0.399 THz) and maximum oscillation frequency (up to 1.226 THz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dixit A, Kottantharayil A, Collaert N, Goodwin M, Jurczak M, DeMeyer K, DeMeyer K (2005) Analysis of the parasitic S/D resistance in multiple-gate FETs. IEEE Transactions on Electron Devices 52(6):1132–1140. https://doi.org/10.1109/TED.2005.848098

    Article  CAS  Google Scholar 

  2. Kranti A, Alastair Armstrong G (2007) Source/drain extension region engineering in FinFETs for low-voltage analog applications. IEEE Electron Device Letters 28(2):139–141. https://doi.org/10.1109/LED.2006.889239

    Article  Google Scholar 

  3. Hisamoto D (2001) FD/DG-SOI MOSFET-a viable approach to overcoming the device scaling limit. International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224). IEEE. https://doi.org/10.1109/IEDM.2001.979528

  4. Pfiester JR, Sivan RD, Liaw HM, Seelbach CA, Gunderson CD (1990) A self-aligned elevated source/drain MOSFET. IEEE electron device letters 11(9):365–367. https://doi.org/10.1109/55.62957

    Article  Google Scholar 

  5. Zhang Z, Zhang S, Chan M (2004) Self-align recessed source drain ultrathin body SOI MOSFET. IEEE Electron Device Letters 25(11):740–742. https://doi.org/10.1109/LED.2004.837582

    Article  CAS  Google Scholar 

  6. Ke, Wei, et al. "Recessed source/drain for sub-50 nm UTB SOI MOSFET." Semiconductor science and technology 22.5 (2007): 577. https://doi.org/10.1088/0268-1242/22/5/021

  7. Saramekala GK, Dubey S, Tiwari PK (2014) Analog and radio-frequency (RF) performance evaluation of fully-depleted (FD) recessed-source/drain (re-S/D) SOI MOSFETs. Superlattice Microst 76:77–89. https://doi.org/10.1016/j.spmi.2014.10.005

    Article  CAS  Google Scholar 

  8. Lee C-W, Borne A, Ferain I, Afzalian A, Yan R, Dehdashti Akhavan N, Razavi P, Colinge J-P (2010) High-temperature performance of silicon junctionless MOSFETs. IEEE transactions on electron devices 57(3):620–625. https://doi.org/10.1109/TED.2009.2039093

    Article  CAS  Google Scholar 

  9. Colinge J-P et al (2010) Nanowire transistors without junctions. Nat Nanotechnol 5(3):225–229. https://doi.org/10.1038/nnano.2010.15

    Article  CAS  PubMed  Google Scholar 

  10. Colinge, Jean-Pierre, et al. (2010) Reduced electric field in junctionless transistors. Applied Physics Letters 96.7: 073510. https://doi.org/10.1063/1.3299014

  11. Lee, Chi-Woo, et al. (2010) Low subthreshold slope in junctionless multigate transistors. Applied Physics Letters 96.10: 102106. https://doi.org/10.1063/1.3358131

  12. Leung G, Chui CO (2012) Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron Device Letters 33(6):767–769. https://doi.org/10.1109/LED.2012.2191931

    Article  Google Scholar 

  13. Hueting RJE, Rajasekharan B, Salm C, Schmitz J (2008) The charge plasma PN diode. IEEE electron device letters 29(12):1367–1369. https://doi.org/10.1109/LED.2008.2006864

    Article  Google Scholar 

  14. Rajasekharan B, Hueting RJE, Salm C, van Hemert T, Wolters RAM, Schmitz J (2010) Fabrication and characterization of the charge-plasma diode. IEEE electron device letters 31(6):528–530. https://doi.org/10.1109/LED.2010.2045731

    Article  CAS  Google Scholar 

  15. Ghosh P, Haldar S, Gupta RS, Gupta M (2012) An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE transactions on electron devices 59(12):3263–3268. https://doi.org/10.1109/TED.2012.2219537

    Article  Google Scholar 

  16. Chaujar R, Kaur R, Saxena M, Gupta M, Gupta RS (2008) Intermodulation distortion and linearity performance assessment of 50-nm gate length L-DUMGAC MOSFET for RFIC design. Superlattice Microst 44(2):143–152. https://doi.org/10.1016/j.spmi.2008.04.007

    Article  CAS  Google Scholar 

  17. Gautam R, Saxena M, Gupta RS, Gupta M (2012) Effect of localised charges on nanoscale cylindrical surrounding gate MOSFET: analog performance and linearity analysis. Microelectron Reliab 52(6):989–994. https://doi.org/10.1016/j.microrel.2011.12.014

    Article  CAS  Google Scholar 

  18. Kang S, Choi B, Kim B (2003) Linearity analysis of CMOS for RF application. IEEE transactions on microwave theory and techniques 51(3):972–977. https://doi.org/10.1109/TMTT.2003.808709

    Article  Google Scholar 

  19. Ma W, Kaya S (2004) Impact of device physics on DG and SOI MOSFET linearity. Solid State Electron 48(10–11):1741–1746. https://doi.org/10.1016/j.sse.2004.05.008

    Article  CAS  Google Scholar 

  20. Kaya S, Ma W (2004) Optimization of RF linearity in DG-MOSFETs. IEEE Electron Device Letters 25(5):308–310. https://doi.org/10.1109/LED.2004.826539

    Article  CAS  Google Scholar 

  21. Sahay S, Kumar MJ (2016) A novel gate-stack-engineered nanowire FET for scaling to the sub-10-nm regime. IEEE Transactions on Electron Devices 63(12):5055–5059. https://doi.org/10.1109/TED.2016.2617383

    Article  Google Scholar 

  22. Sahu C, Singh J (2014) Charge-plasma based process variation immune junctionless transistor. IEEE Electron device letters 35(3):411–413. https://doi.org/10.1109/LED.2013.2297451

    Article  CAS  Google Scholar 

  23. Shan C, Wang Y, Bao M-T (2016) A charge-plasma-based transistor with induced graded channel for enhanced analog performance. IEEE Transactions on electron devices 63(6):2275–2281. https://doi.org/10.1109/TED.2016.2549554

    Article  CAS  Google Scholar 

  24. Sahay, Shubham, and Mamidala Jagadesh Kumar (2019) Junctionless field-effect transistors: design, modeling, and simulation. John Wiley & Sons

  25. Verma, Prateek Kishor, and Santosh Kumar Gupta. (2020) Proposal of charge plasma based recessed source/drain dopingless junctionless transistor and its linearity distortion analysis for circuit applications." Silicon: 1–28. https://doi.org/10.1007/s12633-020-00402-8

  26. Verma, Prateek Kishor, Akash Singh Rawat, and Santosh Kumar Gupta. "Temperature-Dependent Analog, RF, and Linearity Analysis of Junctionless Quadruple Gate MOSFETs for Analog Applications." Advances in VLSI, Communication, and Signal Processing. Springer, Singapore, 2020. 355–366. https://doi.org/10.1007/978-981-32-9775-3_32

  27. Cho S, Kim KR, Park B-G, Kang IM (2011) RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Transactions on Electron Devices 58(5):1388–1396. https://doi.org/10.1109/TED.2011.2109724

    Article  Google Scholar 

  28. Lee J-S, Cho S-J, Park B-G, Harris JSJ, Kang I-M (2012) Small-signal modeling of gate-all-around (GAA) Junctionless (JL) MOSFETs for sub-millimeter wave applications. JSTS: Journal of Semiconductor Technology and Science 12(2):230–239. https://doi.org/10.5573/JSTS.2012.12.2.230

    Article  Google Scholar 

  29. Kang M, Kang IM, Jung YH, Shin H (2007) Separate extraction of gate resistance components in RF MOSFETs. IEEE transactions on electron devices 54(6):1459–1463. https://doi.org/10.1109/TED.2007.896361

    Article  CAS  Google Scholar 

  30. Silvaco, Atlas User’s Manual. Silvaco, Inc. 567–1000 (2016)

Download references

Acknowledgments

The authors would like to express sincere gratitude to the VLSI laboratory of Electronics and Communication Engineering Department, MNNIT-Allahabad, for providing the resources to use SILVACO TCAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Kishor Verma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P.K., Gupta, S.K. An Improved Analog/RF and Linearity Performances with Small-Signal Parameter Extraction of Virtually Doped Recessed Source/Drain Dopingless Junctionless Transistor for Radio-Frequency Applications. Silicon 13, 1519–1539 (2021). https://doi.org/10.1007/s12633-020-00518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00518-x

Keywords

Navigation