Skip to main content

Advertisement

Log in

Structural, Optical and Electronic Properties of Silicon Carbide Doped PVA/NiO for Low Cost Electronics Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This work aims to study of the effect of increase in an atoms numbers added to the (PVA-NiO-SiC) structures on the geometrical parameters, electronic and spectroscopic characteristics for low cost electronic applications by Gaussian 0.9 program with help of Gaussian View 0.5 using DFT with (LanL2DZ). The structural, electronic and optical properties included: energy gap, cohesive energy, chemical softness, electron affinity, ionization potential, chemical hardness, electronegativity, electrophilicity, density of states, IR spectra, UV spectra and Raman spectra. The results indicated to the increase in atoms numbers leads to decrease the cohesive energy, energy gap, and ionization potential. The UV-Vis spectra of small molecules are higher than larger molecules in intensity and moves toward cut off energy frequency for large molecules. The results indicated to the (PVA-NiO-SiC) structures can be useful for various optoelectronics fields like: electronic gates, diodes, photovoltaic devices, transistors...etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma SK, Prakash J, Sudarshan K, Sen D, Mazumder S, Pujari PK (2015) Structure at interphase of poly (vinyl alcohol)–SiCNanofiber composite and its impact on mechanical properties: positron annihilation and small-angle x-ray scattering studies. Macromolecules 48(16):5706–5713

    Article  CAS  Google Scholar 

  2. Ningaraju S, Prakash AG, Ravikumar HB (2018) Studies on free volume controlled electrical properties of PVA/NiO and PVA/TiO2 polymer nanocomposites. Solid State Ionics 320:132–147

    Article  CAS  Google Scholar 

  3. Hashim A, Hadi A (2017) A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites. Sens Lett 15:1019. https://doi.org/10.1166/sl.2017.3910

    Article  Google Scholar 

  4. Hashim A, Hadi Q (2017) Novel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensor. Sens Lett 15:951. https://doi.org/10.1166/sl.2017.3892

    Article  Google Scholar 

  5. Hermann, K., & Witko, M. (2001). Theory of physical and chemical behavior of transition metal oxides: vanadium and molybdenum oxides. In Oxide surfaces (pp. 136-198). Amsterdam: Elsevier. Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-1953-2

  6. Hashim A, Hadi A (2017) Synthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor application. Sens Lett 15(10):858–861

    Article  Google Scholar 

  7. Balko J, Csanádi T, Sedlák R, Vojtko M, Kovalčíková A, Koval K et al (2017) Nanoindentation and tribology of VC, NbC and ZrC refractory carbides. J Eur Ceram Soc 37(14):4371–4377

    Article  CAS  Google Scholar 

  8. Sk MM, Yue CY, Ghosh K, Jena RK (2016) Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J Power Sources 308:121–140

    Article  CAS  Google Scholar 

  9. Mahendia S, Tomar AK, Kumar S (2010) Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J Alloys Compd 508(2):406–411

    Article  CAS  Google Scholar 

  10. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  Google Scholar 

  11. Oyama ST (1992) Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 15(2):179–200

    Article  CAS  Google Scholar 

  12. Norman TJ, Magana D, Wilson T, Burns C, Zhang JZ, Cao D, Bridges F (2003) Optical and surface structural properties of Mn2+−doped ZnSe nanoparticles. J Phys Chem B 107(26):6309–6317

    Article  CAS  Google Scholar 

  13. MdGazzali PM, Kanimozhi V, Priyadharsini P, Chandrasekaran G (2014) Structural and magnetic properties of ultrafine magnesium ferrite nanoparticles. Adv Mater Res 938:128–133 Trans Tech Publications

    Article  Google Scholar 

  14. Steven, MV (2010) Quantal Density Functional Theory II. Approximation Methods and Applications, J Am Chem Soc 2010, 132, 32, 11387–11388

  15. Jensen F (2002) Polarization consistent basis sets. II estimating the Kohn–Sham basis set limit. J Chem Phys 116(17):7372–7379

    Article  CAS  Google Scholar 

  16. Kim, M. C., Sim, E., & Burke, K.: Communication: avoiding unbound anions in density functional calculations. (2011)

  17. Louis F, Gonzalez CA, Sawerysyn JP (2004) Direct combined ab initio/transition state theory study of the kinetics of the abstraction reactions of halogenated methanes with hydrogen atoms. J Phys Chem A 108(47):10586–10593

    Article  CAS  Google Scholar 

  18. Kohanoff, J., &Gidopoulos, N. I.: Density functional theory: basics, new trends and applications. In: Handbook of Molecular Physics and Quantum Chemistry, 2(part 5), pp. 532–568. (2003)

  19. Hind Ahmed, Ahmed Hashim: Fabrication of novel (PVA/NiO/SiC) nanocomposites, structural, electronic and optical properties for humidity sensors. Int J Sci Technol Res 8, 11, (2019)

  20. Hashim A, Abduljalil HM, Ahmed H (2020) Fabrication and characterization of (PVA-TiO2)1-x/ SiCx nanocomposites for biomedical applications. Egypt J Chem 63(1):71. https://doi.org/10.21608/EJCHEM.2019.10712.1695

    Article  Google Scholar 

  21. Hashim A, Abduljalil H, Ahmed H (2019) Analysis of optical, electronic and spectroscopic properties of (biopolymer-SiC) nanocomposites for electronics applications. Egypt J Chem 62(9):1659. https://doi.org/10.21608/EJCHEM.2019.7154.1590

    Article  Google Scholar 

  22. Hazim A, Abduljalil HM, Hashim A (2019) Analysis of structural and electronic properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2, PMMA/ZrO2-Ag, PMMA-Ag) nanocomposites for low cost electronics and optics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00148-0

  23. Hugosson, H. W.: A Theoretical Treatise on the Electronic Structure of Designer Hard Materials (Doctoral dissertation, Acta Universitatis Upsaliensis). (2001)

  24. Young, D. C.: A Practical Guide for Applying Techniques to Real-World Problems. (2001)

  25. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab Initio Molecular Orbital Theory. Wiley, New York

    Google Scholar 

  26. Oftadeh M, Naseh S, Hamadanian M (2011) Electronic properties and dipole polarizability of thiophene and thiophenol derivatives via density functional theory. Comput Theor Chem 966(1–3):20–25

    Article  CAS  Google Scholar 

  27. Sadasivam K, Kumaresan R (2011) Theoretical investigation on the antioxidant behavior of chrysoeriol and hispidulin flavonoid compounds–A DFT study. Comput Theor Chem 963(1):227–235

    Article  CAS  Google Scholar 

  28. Sabin JR, Trickey SB, Apell SP, Oddershede J (2000) Molecular shape, capacitance, and chemical hardness. Int J Quantum Chem 77(1):358–366

    Article  CAS  Google Scholar 

  29. Camargo AJ, Honório KM, Mercadante R, Molfetta FA, Alves CN, da Silva AB (2003) A study of neolignan compounds with biological activity against Paracoccidioidesbrasiliensis by using quantum chemical and chemometric methods. J Braz Chem Soc 14(5):809–814

    Article  CAS  Google Scholar 

  30. Shenghua L, He Y, Yuansheng J (2003) Lubrication chemistry viewed from DFT-based concepts and electronic structural principles. Int J Mol Sci 5(1):13–34

    Article  Google Scholar 

  31. Barnes CE (2003) Inorganic chemistry (Catherine E. Housecroft and Alan G. Sharpe). J Chem Educ 80:747

    Article  CAS  Google Scholar 

  32. Pham NK, Vu NH, Van Pham V, Ta HKT, Cao TM, Thoai N, Tran VC (2018) Comprehensive resistive switching behavior of hybrid polyvinyl alcohol and TiO2 nanotube nanocomposites identified by combining experimental and density functional theory studies. J Mater Chem C 6(8):1971–1979

    Article  CAS  Google Scholar 

  33. Yu, M., Jayanthi, C. S., & Wu, S. Y.: Bonding nature, structural optimization, and energetics studies of SiC graphitic-like layer structures and single/double walled nanotubes. arXiv preprint arXiv:0901.3567. (2009)

  34. Dietzel PD, Johnsen RE, Fjellvåg H, Bordiga S, Groppo E, Chavan S, Blom R (2008) Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal–organic framework Ni2 (dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chem Commun 41:5125–5127

    Article  Google Scholar 

  35. Ramosa JM, Maurıcio MC, AniltonJr CC, Otavio V, Claudio ATS (2011) Fourier transform infrared spectrum: vibrational assignments using density functional theory and natural bond orbital analysis of the bis (guanidoacetate) nickel (II) complex. ScienceAsia 37:247–255

    Article  Google Scholar 

  36. Prabowo, W. A., Agusta, M. K., Nugraha, S., Lubis, A. H., &Dipojono, H. K.: Density functional theory study of the adsorption of thiophene on NiMoS surface. In: Proceedings of the International MultiConference of Engineers and Computer Scientists (vol. 2). (2013)

  37. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. J Chem Phys 96(12):9005–9012

    Article  CAS  Google Scholar 

  38. Atkins P, De Paula J (2011) Physical Chemistry for the Life Sciences. Oxford University Press, USA

    Google Scholar 

  39. Suart, B.: Infrared spectroscopy: fundamental and applications. Google Scholar. (2004)

  40. Hoffman RV (2004) Organic Chemistry: An Intermediate Text. Wiley, Hoboken

    Book  Google Scholar 

  41. Attaran AM, Hooshyari K, Javanbakht M, Enhessari M (2013) Fabrication and characterization of poly vinyl alcohol/poly vinyl pyrrolidone/MnTiONanocomposite membranes for PEM fuel cells. Membranes 4(2):86–90

    Google Scholar 

  42. Kavitha, E., Sundaraganesan, N., & Sebastian, S.: Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method. (2010)

  43. Lin, F.: Preparation and characterization of polymer TiO2nanocomposites via in-situ polymerization (Master’s thesis, University of Waterloo). (2006)

  44. Hashim A, Jassim A (2017) Novel of (PVA-ST-PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens Lett 15(12):1003. https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

  45. Hashim A, Jassim A (2018) Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J Bionanoscience 12:170–176. https://doi.org/10.1166/jbns.2018.1518

    Article  CAS  Google Scholar 

  46. Hashim A, Al-Attiyah KHH, Obaid SF (2019) Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukr J Phys 64(2):157. https://doi.org/10.15407/ujpe64.2.157

    Article  Google Scholar 

  47. Hashim A, Agool IR, Kadhim KJ (2018) Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J Mater Sci Mater Electron 29(12):10369–10394. https://doi.org/10.1007/s10854-018-9095-z

    Article  CAS  Google Scholar 

  48. Al-Garah NH, Rashid FL, Hadi A, Hashim A (2018) Synthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applications. J Bionanoscience 12:336. https://doi.org/10.1166/jbns.2018.1538

    Article  CAS  Google Scholar 

  49. Rabee BH, Hashim A (2011) Synthesis and characterization of carbon nanotubes -polystyrene composites. Eur J Sci Res 60(2):247–254

    Google Scholar 

  50. Agool IR, Mohammed FS, Hashim A (2015) The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blend. Adv Environ Biol 9(11):1–10

    Google Scholar 

  51. Kadham AJ, Hassan D, Mohammad N, Hashim A (2018) Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bull Electr Eng Inform 7(1):28. https://doi.org/10.11591/eei.v7i1.839

    Article  Google Scholar 

  52. Hashim A, Hadi Q (2018) Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J Inorg Organomet Polym Mater 28(4):1394–1401. https://doi.org/10.1007/s10904-018-0837-4

    Article  CAS  Google Scholar 

  53. Ahmed H, Abduljalil HM, Hashim A (2019) Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00111-z

  54. Ahmed H, Abduljalil HM, Hashim A (2019) Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00100-2

  55. Hashim A, Hadi Q (2018) Structural, electrical and optical properties of (biopolymer blend/ titanium carbide) nanocomposites for low cost humidity sensors. J Mater Sci Mater Electron 29:11598–11604. https://doi.org/10.1007/s10854-018-9257-z

    Article  CAS  Google Scholar 

  56. Hadi S, Hashim A, Jewad A (2011) Optical properties of (PVA-LiF) composites. Aust J Basic Appl Sci 5(9):2192–2195

    CAS  Google Scholar 

  57. Al-Assiri MS, El-Desoky MM, Alyamani A, Al-Hajry A, Al-Mogeeth A, Bahgat AA (2010) Spectroscopic study of nanocrystalline V2O5·nH2O films doped with Li ions. Opt Laser Technol 42(6):994–1003

    Article  CAS  Google Scholar 

  58. El-Desoky MM, El-Barbary GA, El Refaey DE, El-Tantawy F (2018) Optical constants and dispersion parameters of La-doped ZnS nanocrystalline films prepared by sol–gel technique. Optik 168:764–777

    Article  CAS  Google Scholar 

  59. Bredow T, Giordano L, Cinquini F, Pacchioni G (2004) Electronic properties of rutile TiO2 ultrathin films: odd-even oscillations with the number of layers. Phys Rev B 70(3):035419

    Article  Google Scholar 

  60. Casassa S, Ferrari AM, Busso M, Pisani C (2002) Structural, magnetic, and electronic properties of the NiO monolayer epitaxially grown on the (001) Ag surface: an ab initio density functional study. J Phys Chem B 106(50):12978–12985

    Article  CAS  Google Scholar 

  61. Sriram S, Chandiramouli R, Balamurugan D, Ravichandran K, Thayumanavan A (2013) Quantum chemical studies on NiOnanoclusters. J Atom Molec Sci 4(4):336–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H., Hashim, A. Structural, Optical and Electronic Properties of Silicon Carbide Doped PVA/NiO for Low Cost Electronics Applications. Silicon 13, 1509–1518 (2021). https://doi.org/10.1007/s12633-020-00543-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00543-w

Keywords

Navigation