Skip to main content
Log in

Quad-Band Circularly Polarized Tunable Graphene Based Dielectric Resonator Antenna for Terahertz Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A Cylindrical Dielectric Resonator antenna (CDRA) along with silicon based Rectangular Dielectric Resonator (RDR) slab is proposed in this paper for terahertz (THz) applications. This antenna provides multi-band response at different resonant frequencies. Unique feature of the proposed antenna is, it provides Circular Polarization (CP) behaviour at quad band in the field of THz dielectric resonator antennas and also CP tuning is achieved by varying graphene potential of the antenna. Furthermore this antenna shows both Right Hand CP (RHCP) and Left Hand CP (LHCP) behaviour at different resonant frequencies. A rectangular slab is incorporated with CDRA knows CPDRA to achieve CP response. Results show that a maximum gain of 6.67 dB, maximum radiation efficiency of 89%, 10 dB Impedance Bandwidth (IBW) of 4.66% (8.59-9THz), 2.98% (10.88–11.21THz), 4.83% (14.19–13.52THz) and 5.86% (15.88–16.84), Axial Ratio Bandwidth (ARBW) of 1.83% (8.66–8.82 THz), 2.16% (10.94–11.18), 3.84% (13.26–13.78 THz) and 4.8% (16.04–16.83 THz) is achieved by the combination of CDRA and Rectangular slab. For antenna tunability, the upper layer of CDRA is layered with graphene material and CP performance of antenna is analyzed for different values of graphene chemical potential. This new approach for the tuning and obtained results make the proposed Quad band CP DRA as unique and is suitable for THz applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Long SA, Mcallister MW, Shen LC (1983) The resonant cylindrical dielectric cavity antenna. IEEE Trans Antennas Propag 31(3):406–412. https://doi.org/10.1109/TAP.1983.1143080

    Article  Google Scholar 

  2. Milligan TA (2005) Modern antenna design2nd edn. Wiley, New Jersey

    Book  Google Scholar 

  3. Balanis CA (2005) Antenna theory: analysis and design3rd edn. John Wiley

    Google Scholar 

  4. Petosa A, Ittipiboon A (Oct. 2010) Dielectric resonator antennas: a historical review and the current state of the art. IEEE Antennas Propag Mag 52(5):91–116

    Article  Google Scholar 

  5. Leung KW, Lim EH, Fang XS (2012) Dielectric resonator antennas: from the basic to the aesthetic. Proc IEEE 100(7):2181–2193

    Article  Google Scholar 

  6. Wen J, Jiao YC, Zhang YX, Jia J (2019) Wideband circularly polarized dielectric resonator antenna loaded with partially reflective surface. International Journal of RF and Microwave Computer-Aided Engineering 29(12)

  7. Nawaz H, Shahid S, Gentili G (2015) Wideband dielectric resonator antenna using CPW fed segments. Microw Opt Technol Lett 58(2):441–445

    Article  Google Scholar 

  8. Kong S, Shum KM, Yang C, Gao L, Chan CH (2021) Wide Impedance-and Gain-Bandwidth Terahertz On-Chip Antenna with Chip-Integrated Dielectric Resonator. IEEE Trans Antennas Propag. https://doi.org/10.1109/TAP.2021.3060060

  9. Zhang M, Li B, Lv X (2014) Cross-slot-coupled wide dual-band circularly polarized rectangular dielectric resonator antenna. IEEE Antennas Wirel Propag Lett 13:532–535. https://doi.org/10.1109/LAWP.2014.2310241

    Article  Google Scholar 

  10. Fumeaux C et al (2016) Terahertz and optical dielectric resonator antennas: potential and challenges for efficient designs. 2016 10th European conference on antennas and propagation (EuCAP), Davos, Switzerland, pp 1–4. https://doi.org/10.1109/EuCAP.2016.7481118

  11. Xia W, Zhang B, Zhou W, Zhang J, Liu C, He D, Wu Z (2021) Rectangular dielectric resonator antenna fed by offset tapered copper and graphene microstrip lines for 5G communications, April-2021

  12. Md. Muzammil Sani, Rakesh Chowdhury, Raghvendra Kumar Chaudhary (2021) Design and analysis of multiple input multiple output antenna for wideband applications using cylindrical dielectric resonator, AEU - International Journal of Electronics and Communications, Volume 131

  13. Chauhan M, Rajput A, Mukherjee B (2021) Wideband circularly polarized low profile dielectric resonator antenna with meta superstrate for high gain. AEU Int J Electron Commun 128

  14. Okan T (2021) High efficiency Unslotted ultra-wideband microstrip antenna for sub-terahertz short range wireless communication systems. Optik 242:166859

    Article  CAS  Google Scholar 

  15. Shalini M, Ganesh MM (2021) A compact antenna structure for circular polarized terahertz radiation. Optik 231

  16. Li S, Zhang X (2019) An ultra-wideband linear to circular polarization converter in reflection mode at terahertz frequencies. Microw Opt Technol Lett 61(12):2675–2680

    Article  Google Scholar 

  17. Dash S, Patnaik A (2018) Material selection for THz antennas. Microw Opt Technol Lett 60(5):1183–1187

    Article  Google Scholar 

  18. Singh RK, Gupta A (2021) A wrenched-square shaped polarization independent and wide angle stable ultra-thin metamaterial absorber for S-band, X-band and Ku-band applications. AEU Int J Electron Commun 132

  19. Chen XF, Zhao YJ (2018) Dual-band polarization and frequency reconfigurable antenna using double layer metasurface. AEU Int J Electron Commun 95:82–87

    Article  Google Scholar 

  20. Chen Z, Wong H, Kelly J (2019) A polarization-reconfigurable glass dielectric resonator antenna using liquid metal. IEEE Trans Antennas Propag 67(5):3427–3432. https://doi.org/10.1109/TAP.2019.2901132

    Article  Google Scholar 

  21. Ren X, Liao S, Xue Q (2019) A circularly polarized Spaceborne antenna with shaped beam for earth coverage applications. IEEE Trans Antennas Propag 67(4):2235–2242. https://doi.org/10.1109/TAP.2018.2889188

    Article  Google Scholar 

  22. Guo Q-Y, Lin QW, Wong H (2021) A high gain millimeter-wave circularly polarized Fabry–Pérot antenna using PRS-integrated polarizer. IEEE Trans Antennas Propag 69(2):1179–1183. https://doi.org/10.1109/TAP.2020.3011110

    Article  Google Scholar 

  23. Guo Q-Y, Wong H (2021) 155 GHz dual-polarized Fabry–Perot cavity antenna using LTCC-based feeding source and phase- shifting surface. IEEE Trans Antennas Propag 69(4):2347–2352. https://doi.org/10.1109/TAP.2020.3019528

    Article  Google Scholar 

  24. Yang N, Leung KW (2020) Compact cylindrical pattern-diversity dielectric resonator antenna. Antennas Wirel Propag Lett 19(1):19–23. https://doi.org/10.1109/LAWP.2019.2951633

    Article  Google Scholar 

  25. Sharma A, Das G, Gupta S, Gangwar RK (2020) Quad-band quad-sense circularly polarized dielectric resonator antenna for GPS/CNSS/WLAN/WiMAX applications. IEEE Antennas Wirel Propag Lett 19(3):403–407. https://doi.org/10.1109/LAWP.2020.2969743

    Article  Google Scholar 

  26. Gupta R, Varshney G, Yaduvanshi RS (2021) Tunable terahertz circularly polarized dielectric resonator antenna. Optik 239

  27. Varshney G, Debnath S, Sharma AK (2020) Tunable circularly polarized graphene antenna for THz applications. Optik 223

  28. Sa'don SNH, Jamaluddin MH, Kamarudin MR, Ahmad F, Yamada Y, Kamardin K, Idris IH, Seman N (2020) Characterisation of tunable graphene antenna. AEU Int J Electron Commun 118:153170

    Article  Google Scholar 

  29. Hosseininejad SE et al (2018) Terahertz dielectric resonator antenna coupled to graphene plasmonic dipole. 12th European conference on antennas and propagation (EuCAP 2018), London, UK, pp 1–5, doi: https://doi.org/10.1049/cp.2018.1041

  30. Varshney G, Singh R, Pandey VS, Yaduvanshi RS (2020) Circularly polarized Two-port MIMO dielectric resonator antenna, Progress In Electromagnetics Research

  31. Li X, Yin W, Khamas S (2020) An Efficient Photomixer Based Slot Fed Terahertz Dielectric Resonator Antenna. 2020 International workshop on antenna technology (iWAT), Bucharest, Romania, pp 1–4. https://doi.org/10.1109/iWAT48004.2020.1570618183

  32. H. Nawaz and M. Ali Babar Abbasi, “Wide-band dielectric resonator antenna using K-shaped fractal,” Microw Opt Technol Lett, vol. 58, no. 6, pp. 1504–1507, 2016

  33. Nissiyah GJ, Madhan MG (2021) Graphene based microstrip antenna for triple and quad band operation at terahertz frequencies. Optik 231:1663606

    Google Scholar 

  34. Shalini M, Ganesh Madhan M (2020) Performance predictions of slotted graphene patch antenna for multi-band operation in terahertz regime. Optik 204:164223

    Article  CAS  Google Scholar 

  35. Chashmi MJ, Rezaei P, Kiani N (2020) Y-shaped graphene-based antenna with switchable circular polarization. Optik 200

  36. Li C, Chiu T (2017) 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Trans Terahertz Sci Technol 7(3):284–294. https://doi.org/10.1109/TTHZ.2017.2670234

    Article  CAS  Google Scholar 

  37. Varshney G (2021) Tunable terahertz dielectric resonator antenna. Silicon 13:1907–1915

    Article  CAS  Google Scholar 

  38. Novin SN, Zarrabi FB, Bazgir M, Heydari S, Ebrahimi S (2019) Field enhancement in metamaterial split ring resonator aperture nano-antenna with spherical nano-particle arrangement. Silicon 11:293–300

    Article  CAS  Google Scholar 

  39. Nourmohammadi A, Nikoufard M (2020) Ultra-wideband photonic hybrid plasmonic horn nanoantenna with SOI configuration. Silicon 12:193–198

    Article  CAS  Google Scholar 

  40. Huitema L, Monediere T (2012) Dielectric materials for compact dielectric resonator antenna applications. Dielectric Material

  41. Luk KM, Leung KW (eds) (2003) Dielectric resonant antenna. Research Studies Press

    Google Scholar 

  42. Yang Y, Liu R, Wu J, Jiang X, Cao P, Hu X, Pan T, Qiu C, Yang J, Song Y, Wu D, Su Y (2015) Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach. Sci Rep 5:13480

    Article  CAS  Google Scholar 

  43. Tai L, Zhu D, Liu X, Yang T, Wang L, Wang R, Jiang S, Chen Z, Xu Z, Li X (2018) Direct growth of graphene on silicon by metal-free chemical vapor deposition. Nano-Micro Lett 10:20. https://doi.org/10.1007/s40820-017-0173-1

    Article  CAS  Google Scholar 

  44. Chen P, Argyropoulos C, Alù A (2013) Terahertz antenna phase shifters using integrally-gated graphene transmission-lines. IEEE Trans Antennas Propag 61(4):1528–1537. https://doi.org/10.1109/TAP.2012.2220327

    Article  Google Scholar 

  45. Liang F, Yang Z, Xie Y, Li H, Zhao D, Wang B (2018) Beam-scanning microstrip Quasi-Yagi–Uda antenna based on hybrid metal-graphene materials. IEEE Photon Technol Lett 30(12):1127–1130. https://doi.org/10.1109/LPT.2018.2835840

    Article  CAS  Google Scholar 

  46. Hanson GW (2008) Dyadic Green's functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56(3):747–757. https://doi.org/10.1109/TAP.2008.917005

    Article  Google Scholar 

  47. Varshney G, Gotra S, Pandey VS, Yaduvanshi RS (2019) Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Commun Netw 21:100246. https://doi.org/10.1016/j.nancom.2019.05.003

    Article  Google Scholar 

Download references

Funding

The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all the authors. The first draft of the manuscript was written by P. UPENDER and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. Upender.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Disclosure of Potential Conflicts of Interest

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Consent for Publication

The manuscript is entitled “Quad-band Circularly Polarized Tunable graphene based Dielectric Resonator Antenna for Terahertz Applications”. It has not been published elsewhere and that it has not been submitted simultaneously for publication elsewhere.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upender, P., Kumar, A. Quad-Band Circularly Polarized Tunable Graphene Based Dielectric Resonator Antenna for Terahertz Applications. Silicon 14, 5513–5526 (2022). https://doi.org/10.1007/s12633-021-01336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01336-5

Keywords

Navigation