Skip to main content

Advertisement

Log in

Bulk Parameters Effect and Comparative Performance Analysis of p-Si/n-CdS/ALD-ZnO Solar Cell

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The primary concern of the Si-based solar cells heterostructure devices is the dopant-free selectively contacting carriers with p-type Si wafers. The obvious potential of a highly straightforward fabrication technique and the decreased energy consumption is primarily what has attracted such significant attention. In the present investigations, computational simulation via SCAPS-1D has been executed on p-Si/n-CdS/ALD-ZnO heterojunction solar cells and attained the champion conversion efficiency of∼19.97% with the help of some considerably amended device parameters. With the proper optimization of the device, we have obtained better photovoltaic parameters by varying the thickness of the p-Si, n-CdS, and atomic layer deposited ALD-ZnO, noted the effect of series and shunt resistance, effect of temperature and incident radiation on the p-Si/n-CdS/ALD-ZnO device. The final proposed photovoltaic parameters have the %PCE = 19.97%, %FF = 83.37%, Jsc = 37.71 mA/cm2, and Voc = 635.3 mV. Finally, the collected performance metrics are compared to the findings from comparable experimental setups. After reaching these findings in the experimental laboratory and meeting the demand for renewable energy globally, it is assumed that such a device may be a turning point for future photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Green MA et al (2020) Solar cell efficiency tables. Prog Photovolt 28:3–15

    Article  Google Scholar 

  2. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519

    Article  CAS  Google Scholar 

  3. Yoshikawa K et al (2017) Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol Energy Mater Sol Cells 173:37–42. https://doi.org/10.1016/j.solmat.2017.06.024

    Article  CAS  Google Scholar 

  4. Singh VK et al (2019) Radial Junction silicon solar cells with micro-pillar array and planar electrode interface for improved photon management and carrier extraction. Curr Appl Phys 19(3):341–346

    Article  Google Scholar 

  5. Zhao Y, Procel P, Smets A, Mazzarella L, Han C, Yang G, Cao L, Yao Z, Weeber A, Zeman M, Isabella O (2022) Effects of (i)a-Si:H deposition temperature on high-efficiency silicon heterojunction solar cells. Prog Photovolt Res Appl. https://doi.org/10.1002/pip.3620

  6. Akhil S, Akash S, Pasha A, Kulkarni B, Jalalah M, Alsaiari M, Harraz FA, Balakrishn RG (2021) Review on perovskite silicon tandem solar cells: Status and prospects 2T, 3T, and 4T for real-world conditions. Mater Des 211:110138. https://doi.org/10.1016/j.matdes.2021.110138

    Article  CAS  Google Scholar 

  7. Islam R, Shine G, Saraswat KC (2014) Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts. Appl Phys Lett 105:182103

    Article  Google Scholar 

  8. Grilli ML, Aydogan S, Yilmaz M (2016) A study on non-stoichiometric p-NiOx/n-Si heterojunction diode fabricated by RF sputtering: Determination of diode parameters. Superlattices Microstruct 100:924

    Article  CAS  Google Scholar 

  9. Bivour M, Temmler J, Steinkemper H, Hermle M (2015) Molybdenum and tungsten oxide: High work function wide band gap contact materials for selective hole contacts of silicon solar cells. Sol Energy Mater Sol Cells 142:34–41

    Article  CAS  Google Scholar 

  10. Gerling LG, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J (2016) Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells. Sol Energy Mater Sol Cells 145:109–115

    Article  CAS  Google Scholar 

  11. Bullock J, Cuevas A, Allen T, Battaglia C (2014) Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells. Appl Phys Lett 105:232109

    Article  Google Scholar 

  12. Sharma AK, Chourasia NK, Chourasia RK (2022) Optical, temperature, and bulk analysis theoretically in p-Si/n-CdS heterojunction solar cell. Mater Today Proc 67:632–636

    Article  Google Scholar 

  13. Geissbühler J, Werner J, Martin de Nicolas S, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, De Wolf S, Ballif C (2015) 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 107:081601

    Article  Google Scholar 

  14. Gerling L, Mahato S, Voz C, Alcubilla R, Puigdollers J (2015) Characterization of Transition Metal Oxide/Silicon Heterojunctions for Solar Cell Applications. Appl Sci 5:695

    Article  CAS  Google Scholar 

  15. Almora O, Gerling LG, Voz C, Alcubilla R, Puigdollers J, Garcia-Belmonte G (2017) Superior performance of V2O5 as hole-selective contact over other transition metal oxides in silicon heterojunction solar cells. Sol Energy Mater Sol Cells 168:221

    Article  CAS  Google Scholar 

  16. Bullock J, Hettick M, Geissbühler J, Ong AJ, Allen T, Sutter-Fella CM, Chen T, Ota H, Schaler EW, De Wolf S, Ballif C, Cuevas A, Javey A (2016) Efficient silicon solar cells with dopant-free asymmetric hetero-contacts. Nat Energy 1:15031

    Article  CAS  Google Scholar 

  17. Um HD, Kim N, Lee K, Hwang I, Seo JH, Seo K (2016) Dopant-Free All-Back-Contact Si Nanohole Solar Cells Using MoOx and LiF Films. Nano Lett 16:981–987

    Article  CAS  PubMed  Google Scholar 

  18. Yu J, Fu Y, Zhu L, Yang Z, Yang X, Ding L, Zeng Y, Yan B, Tang J, Gao P, Ye J (2018) Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide. Sol Energy 159:704

    Article  CAS  Google Scholar 

  19. Wu W, Lin W, Zhong S, Paviet-Salomon B, Despeisse M, Liang Z, Boccard M, Shen H, Ballif C (2018) 22% efficient dopant-free interdigitated back contact silicon solar cells. In The 8th Int. Conf. Crystalline Silicon Photovoltaics (SiliconPV). AIP Publishing, New York 040025–1–040025–6. https://aip.scitation.org/doi/abs/https://doi.org/10.1063/1.5049288. Accessed Feb 2023

  20. José Luis H, Kunta Y, Andrea F, Nicolas M, Nick V, Van Elisabeth A, Dries S, Kevin V, Harold P, Jef P, Daisuke A, Masashi Y, Toshihiko U, Hisashi U, Takashi K, Christophe A, Naoaki N, Toru T, Takahisa F, Gensuke K, Kenji Y (2012) High-Efficiency Silver-Free Heterojunction Silicon Solar Cell. Jpn. J. Appl. Phys. 51:10NA04

    Article  Google Scholar 

  21. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY (2018) Solar cell efficiency tables (version 52). Prog Photovoltaics 26:427

    Article  Google Scholar 

  22. Fara L, Chilibon I, Craciunescu D, Diaconu A, Fara S (2023) Review: Heterojunction Tandem Solar Cells on Si-Based Metal Oxides. Energies 16(7):3033. https://doi.org/10.3390/en16073033

    Article  CAS  Google Scholar 

  23. Belarbi M et al (2022) Efficiency enhancement of triple absorber layer perovskite solar cells with the best materials for electron and hole transport layers: a numerical study. Semicond. Sci. Technol. 37:095016

    Article  Google Scholar 

  24. Untila GG, Kost TN, Chebotareva AB (2016) Bifacial 8 3%/5 4% front/rear efficiency ZnO:Al/n-Si heterojunction solar cell produced by spray pyrolysis. Solar Energy 127:184–197. https://doi.org/10.1016/j.solener.2016.01.028

    Article  CAS  Google Scholar 

  25. Zhang W, Shen H, Yin M, Linfeng Lu, Binbin Xu, Li D (2022) Heterostructure Silicon Solar Cells with Enhanced Power Conversion Efficiency Based on Six/Ni3+ Self-Doped NiOx Passivating Contact. ACS Omega 7(19):16494–16501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen L et al (2017) Research on ZnO/Si heterojunction solar cells. J. Semicond. 38:054005

    Article  Google Scholar 

  27. Chirila A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl AR, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk YE, Bilger G, Tiwari AN (2011) Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat Mater 10:857

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB (2014) Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv Energy Mater 4:1301465

    Article  Google Scholar 

  29. Suryawanshi MP, Agawane GL, Bhosale SM, Shin SW, Patil PS, Kim JH, Moholkar AV (2013) CZTS based thin film solar cells: a status review. Mater Technol 28:98

    Article  CAS  Google Scholar 

  30. Kumar SG, Rao KSRK (2014) Physics and Chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy Environ Sci 7:45

    Article  CAS  Google Scholar 

  31. Sun H, Sun K, Huang J, Yan C, Liu F, Park J, Pu A, Stride JA, Green MA, Hao X (2018) Efficiency Enhancement of Kesterite Cu2ZnSnS4 Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface. ACS Appl Energy Mater 1:154

    Article  CAS  Google Scholar 

  32. Cai L, Wang W et al (2019) 12.29% Low temperature-processed dopant-free CdS/p-Si heterojunction solar cells. Adv Mater Interfaces 6(12):1900367

    Article  Google Scholar 

  33. Jha PK, Chourasia NK, Sharma AK, Chourasia RK (2022) Optimization of electrical properties for performance analysis of p-Si/n-CdS/ITO heterojunction photovoltaic cell. Mater Today Proc 67:620–624

    Article  CAS  Google Scholar 

  34. Yadav P, Pathak C, Mandalia HC, Pandey K (2012) High-efficiency ZnO: In/SiO2/n-Si heterojunction solar cells. Int J Chem Anal Sci 3(4):1344–1348

    Google Scholar 

  35. Moret M, Chaaya AA, Bechelany M, Miele P, Robin Y, Briot O (2014) Atomic Layer Deposition of zinc oxide for solar cell applications. Superlattices Microstruct 75:477–484

    Article  CAS  Google Scholar 

  36. Lee J, Jeon DH, Hwang DK, Yang KJ, Kang JK, Sung SJ, Park H, Kim DH (2011) Atomic Layer Deposition of Ultrathin ZnO Films for Hybrid Window Layers for Cu (Inx, Ga1−x) Se2 Solar Cells. Nanomaterials 11:2779

    Article  Google Scholar 

  37. Avasthi S, Mcclain WE, Man G, Kahn A, Schwartz J, Sturn JC (2013) Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Applied Physics Letter 102:203901

    Article  Google Scholar 

  38. Kim AN, Um H-D, Choi I, Kim K-H, Seo K (2016) 18 4% efficient heterojunction Si solar cells using optimized ITO/Top electrode. ACS Appl. Mater. Interfaces 8:11412–11417

    Article  CAS  PubMed  Google Scholar 

  39. Bullock J, Hettick M, Geissbühler J, Ong AJ, Allen T et al (2016) Efficient silicon solar cells with dopant-free asymmetric hetero-contacts. Nat Energy 1:15031

    Article  CAS  Google Scholar 

  40. Chistiakova G, Macco B, Korte L (2020) Low-temperature atomic layer deposited magnesium oxide as a passivating electron contact for c-Si-based solar cells. IEEE J Photovoltaics 10(2):398–406

    Article  Google Scholar 

  41. Ravindra P, Mukherjee R, Avasthi S (2017) Hole-selective electron-blocking copper oxide contact for silicon solar cells. IEEE J Photovoltaics 7(5):1278–1283

    Article  Google Scholar 

  42. Hancox J, Rochford LA, Clare D et al (2011) Utilizing n-type Vanadium oxide films as hole-extracting layers for small molecular organic photovoltaics. APL 99:013304

    Google Scholar 

  43. Geissbuhler J, Werner J, De Nicolas SM, Barraud L et al (2015) 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. APL 107:081601

    Google Scholar 

  44. Nayak M, Mandal S, Pandey A, Mudgal S, Singh S, Kumarala VK (2019) Nickel oxide hole-selective hetero-contact for silicon solar cells: role of SiOx interlayer on device performance. Sol RRL 3(11):1900261

  45. Mews M, Lemaire A, Korte L (2017) Sputtered tungsten oxide as hole contact for silicon heterojunction solar cells. J Photovolt 7(5):1209–1215

    Article  Google Scholar 

  46. Kasap SO (2018) Principles of electronic materials and devices, 4th edn, ch 5. McGraw-Hill Education, New York, NY

  47. Sze SM (1981) Physics of Semiconductor Devices, 2nd IOP Science 81-265-1104-4

  48. Green MA (1981) Solar cell fill factors: General graph and empirical expressions. Solid State Electron 24(8):788–789. https://doi.org/10.1016/0038-1101(81)90062-9

    Article  CAS  Google Scholar 

  49. Jha PK, Chourasia NK, Srivastava A, Sharma AK, Kumar R, Sharma S, Kumar M, Chourasia RK  (2023) Study of Eco-Friendly Organic-Inorganic Heterostructure CH3NH3SnI3 Perovskite Solar Cell via SCAPS Simulation. J Electron Mater. https://doi.org/10.1007/s11664-023-10267-3

  50. Sharma AK, Chourasia NK, Jha PK, Kumar R, Kumar M, Chourasia RK (2023) Characteristic Features and Performance Investigations of a PTB7:PC71BM/PFN:Br Pure Organic Solar Cell Using SCAPS-1D. J Electron Mater. https://doi.org/10.1007/s11664-022-10202-y

  51. Würfel P, Würfel U (2009) Physics of solar cells from basic principles to advanced concepts, 3rd edn. Wiley-VCHVerlag GmbH & Co KGaA, Weinheim, Germany

  52. Holman ZC, Descoeudres A, de Wolf S, Ballif C (2013) Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors. IEEE J Photovoltaics 3:1243

    Article  Google Scholar 

  53. Pietruszka R, Witkowski BS, Zielony E, Gwozdz K, Placzek-Popko E, Godlewski M (2017) ZnO/Si heterojunction solar cell fabricated by atomic layer deposition and hydrothermal methods. Sol Energy 155:1282–1288

    Article  CAS  Google Scholar 

  54. Shah DK, Akhtar MS, Kim CY, Yang OB (2020) Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties. Appl Sci 10:6062

    Article  CAS  Google Scholar 

  55. Srivastava S, Singh S, Singh VK (2021) Bulk and interface defects analysis of n-CdS/p-Si heterojunction solar cell. Opt Mater 111:110687

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr. Marc Burgelman, University of Gent, Belgium, for the SCAPS-1D simulation software.

Author information

Authors and Affiliations

Authors

Contributions

Atish Kumar Sharma: Writing - Original Draft, Software, Validation; Rakesh Kumar: Software, Formal Analysis, Prakash Kumar Jha: Formal Analysis, Manish Kumar: Review & Editing, Formal Analysis; Nitesh K. Chourasia: Writing Original draft, Review & Editing, Formal analysis; Ritesh Kumar Chourasia: Conceptualization, Methodology, Investigation, Software, Validation, Supervision, Data Curation, Writing - Original Draft, Formal analysis.

Corresponding authors

Correspondence to Nitesh K. Chourasia or Ritesh Kumar Chourasia.

Ethics declarations

Ethical Approval

This is the first original research article. This original work has not been published or offered for publication in any other journal. This theoretical, computational, and simulation study does not belong to the extension of any earlier work.

Consent to Participate

Not applicable.

Consent for Publication

Yes.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.K., Kumar, R., Jha, P.K. et al. Bulk Parameters Effect and Comparative Performance Analysis of p-Si/n-CdS/ALD-ZnO Solar Cell. Silicon 15, 6497–6508 (2023). https://doi.org/10.1007/s12633-023-02518-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02518-z

Keywords

Navigation