Skip to main content
Log in

Pressure dependence of the electronic structure in Ge, GaP and InP semiconductors at room temperature

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The electronic structure of Ge, GaP and InP semiconductors under hydrostatic pressure based on the empirical pseudopotential method have been reported. The pressure coefficients, pressure dependent form factors, of the main band gaps at \( \underline{\Upgamma } ,\;\underline{\text{X}} \) and \( \underline{\text{L}} \) symmetry points in the Brillouin zone have been calculated. We have found that most of the values of the electronic energy bands were more sensitive to the pressure dependent form factors associated with the reciprocal lattice vectors of \( \left| {\Updelta \underline{\underline{{\mathbf{G}}}} } \right|^{2} = 11 \) than any other value. Our calculations for the energy gaps of the semiconductors under investigation at different pressures have been found to be in excellent agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A M Elabsy and E B Elkenany Physica B 405 266 (2010).

    Article  ADS  Google Scholar 

  2. J C Phillips Bonds and Bands in Semiconductors (New York: Academic Press) (1973).

    Google Scholar 

  3. M L Cohen and J R Chelikowsky Electronic Structure and Optical Properties of Semiconductors (Berlin: Springer) (1988).

    Book  Google Scholar 

  4. M Z Huang and W Y Ching Phys. Rev. B 47 9449 (1993).

    Article  ADS  Google Scholar 

  5. M Balkanski Handbook on Semiconductors, Optical Properties of Solids, 2 (Amsterdam: North-Holland) (1980).

    Google Scholar 

  6. P L Souza, P R Ribas, J V Bellini and W J Mendes Appl. Phys. 79 3482 (1996).

    Google Scholar 

  7. M Boucenna and N Bouarissa Matter. Chem. Phys. 84 375 (2004).

    Article  Google Scholar 

  8. M Boucenna and N Bouarissa Czech. J. Phys. 55 65 (2005).

    Google Scholar 

  9. A Bechiri, F Benmakhlouf and N Bouarissa Mater. Chem. Phys. 77 507 (2002).

    Article  Google Scholar 

  10. N Bouarissa Mater. Sci. Eng. B 94 54 (2002).

    Article  Google Scholar 

  11. N Bouarissa Mater. Chem. Phys. 73 51 (2002).

    Article  Google Scholar 

  12. F Benmakhlouf, A Bechiri and N Bouarissa Solid State Electron. 47 1335 (2003).

    Article  ADS  Google Scholar 

  13. N Y Aouina, F Mezrag, M Boucenna, M El-Farra and N Bouarissa Mater. Sci. Eng. B 123 87 (2005).

    Article  Google Scholar 

  14. S Saib, N Bouarissa, P Rodrıguez-Hernandez and A Munoz Physica B 403 4059 (2008).

    Article  ADS  Google Scholar 

  15. S Saib and N Bouarissa Diam. Relat. Mater. 18 1200 (2009).

    Article  ADS  Google Scholar 

  16. A M Elabsy, A R Degheidy, H G Abdelwahed and E B Elkenany Physica B 405 3709 (2010).

    Article  ADS  Google Scholar 

  17. G A Samara Phys. Rev. B. 27 3494 (1983).

    Article  ADS  Google Scholar 

  18. P Harrison Quantum Wells Wires and Quantum Dots, 2nd edn. (New York: Wiley) Chapter 11 (2005).

  19. B K Ridley Quantum Processes in Semiconductors, 4th edn. (Oxford: Clarendon Press) Chapter 1 (1999).

  20. R M Martin Electronic Structure Basic Theory and Practical Methods (UK: Cambridge) p 204 (2004).

  21. R K Thapa, Sandeep, M P Ghimire and Lalmuanpuia Indian J. Phys. 85 727 (2011).

    Google Scholar 

  22. V N Chandra Shekar, V Kathirvel and P Ch Sahu Indian J. Phys. 84 485 (2010).

    Google Scholar 

  23. J C Philips and L Klienman Phys. Rev. 116 287 (1959).

    Article  ADS  Google Scholar 

  24. M H Cohen and V Heine Phys. Rev. 122 1821 (1961).

    Article  ADS  Google Scholar 

  25. B J Austin, V Heine and L J Sham Phys. Rev. 127 276 (1962).

    Article  ADS  MATH  Google Scholar 

  26. M L Cohen and T K Bergstresser Phys. Rev. 141 780 (1966).

    ADS  Google Scholar 

  27. G J Ackland Rep. Prog. Phys. 64 483 (2001).

    Article  ADS  Google Scholar 

  28. S B Zhang and M L Cohen Phys. Rev. B. 35 7604 (1987).

    Article  ADS  Google Scholar 

  29. A Mujica, R J Needs and A Munoz Phys. Rev. B. 52 8881 (1995).

    Article  ADS  Google Scholar 

  30. A Mujica, P Rodriguez-Hernandez, S Rdescu, R J Needs and A Munoz Phys. Status Solidi B. 211 39 (1999).

    Article  ADS  Google Scholar 

  31. N Bouarissa Solid State Electron. 44 2193 (2000).

    Article  ADS  Google Scholar 

  32. N Bouarissa Eur. Phys. J. B. 26 153 (2002).

    Article  ADS  Google Scholar 

  33. R G Greene, H Luo, K Ghandehari and A L Ruoff J. Phys. Chem. Solids 56 517 (1995).

    Article  ADS  Google Scholar 

  34. A Gilat MATLAB: An Introduction with Applications, 2nd edn. (New York: Wiley) (2005).

    Google Scholar 

  35. H Muller, R Trommer, M Cardona and P Vogl Phys. Rev. B. 21 4879 (1980).

    Article  ADS  Google Scholar 

  36. S Adachi Properties of Group-IV, III–V and II–VI Semiconductors (New York: Wiley) chapter 2 (2005).

  37. N Bouarissa, A Tanto, H Aourag and T Bent-Meziane Comput. Mater. Sci. 3 430 (1995).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. E.A. Elwakil for his interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Elkenany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degheidy, A.R., Elabsy, A.M., Abdelwahed, H.G. et al. Pressure dependence of the electronic structure in Ge, GaP and InP semiconductors at room temperature. Indian J Phys 86, 363–369 (2012). https://doi.org/10.1007/s12648-012-0059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0059-5

Keywords

PACS Nos.

Navigation