Skip to main content
Log in

A new optical Heisenberg ferromagnetic model for optical directional velocity magnetic flows with geometric phase

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, we first present the theory of Heisenberg ferromagnetic model of directional velocity magnetic flows of particles with the help of the quasi-frame in ordinary space. Afterward, we give new integrability conditions of directional velocity magnetic flows by using quasi-frame fields. Additionally, we derive the total phase for quasi-vector fields. Finally, we obtain new constructions for quasi-curvatures of directional velocity magnetic flows by Heisenberg ferromagnetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S Baş and T Körpınar Bol. Soc. Paran. Mat. 31 9 (2013)

    Google Scholar 

  2. S Baş and T Körpınar J. Adv. Phys. 7 427 (2018)

    Google Scholar 

  3. T Körpınar and S Baş Int. J. Geom. Methods Mod. Phys. 16 1950020 (2019)

    MathSciNet  Google Scholar 

  4. Z S Körpinar, M Tuz and T Körpinar Int. J. Theor. Phys. 55 8 (2016)

    Google Scholar 

  5. Z S Körpinar, E Turhan and M Tuz Int. J. Theor. Phys. 54 3195 (2015)

    Google Scholar 

  6. D Y Kwon , F C Park and D P Chi Appl. Math. Lett. 18 1156 (2005)

    MathSciNet  Google Scholar 

  7. D E Kharzeev Prog. Part. Nucl. Phys. 75 133 (2014)

    ADS  Google Scholar 

  8. E Hairer, C Lubich and G Wanner Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (Berlin: Springer) (2006).

    Google Scholar 

  9. T Tajima Laser Part. Beams 3 351 (1985)

    ADS  Google Scholar 

  10. G Chen and Q Wang Opt. Quantum Electron. 27 1069 (1995)

    Google Scholar 

  11. G L Lamb J. Math. Phys. 18 1654 (1977)

    ADS  Google Scholar 

  12. S Murugesh and R Balakrishnan Phys. Lett. A 290 81 (2001)

    ADS  MathSciNet  Google Scholar 

  13. M V Berrry Proc. R. Soc. Lond. A Math. Phys. Sci. 392 45 (1984)

    ADS  Google Scholar 

  14. X S Fang and Z Q Lin IEEE Trans. Microw. Theory Tech. MTT 33 1150 (1985)

    Google Scholar 

  15. J N Ross Opt. Quantum Electron. 16 455 (1984)

    ADS  Google Scholar 

  16. A Tomita and R Y Chiao Phys. Rev. Lett. 57 937 (1986)

    ADS  Google Scholar 

  17. F Wassmann and A Ankiewicz Appl. Opt. 37 18 (1998)

    Google Scholar 

  18. R Balakrishnan, R Bishop and R Dandoloff Phys. Rev. Lett. 64 2107 (1990)

    ADS  MathSciNet  Google Scholar 

  19. R Balakrishnan, R Bishop and R Dandoloff Phys. Rev. B 47 3108 (1993)

    ADS  Google Scholar 

  20. R Balakrishnan and R Dandoloff Phys. Lett. A 260 62 (1999)

    ADS  MathSciNet  Google Scholar 

  21. T Körpınar Acta Scientiarum Technology 37 245 (2015)

    Google Scholar 

  22. T Körpinar and R C Demirkol Int. J. Geom. Methods Mod. Phys. 15 1850020 (2018)

    MathSciNet  Google Scholar 

  23. T Körpinar and R C Demirkol Int. J. Geom. Methods Mod. Phys. 15 1850184 (2018)

    MathSciNet  Google Scholar 

  24. N Gürbüz Int. J. Geom. Methods Mod. Phys. 12 1550052 (2015)

    MathSciNet  Google Scholar 

  25. N Gürbüz Int. J. Geom. Methods Mod. Phys. 14 1750175 (2017)

    MathSciNet  Google Scholar 

  26. Z Körpınar and M İnç J. Adv. Phys. 7 239 (2018)

    Google Scholar 

  27. Z Körpinar Therm. Sci. 22 87 (2018)

    Google Scholar 

  28. Z Körpinar Acta Sci. Technol. 41 e36596 (2019)

    Google Scholar 

  29. G Öztürk, S Büyükkütük and I Kisi Bull. Iran. Math. Soc. 43 771 (2017)

    Google Scholar 

  30. I Kisi and G Öztürk Int. J. Geom. Meth. Mod. Phys. 14 1750026 (2017)

    Google Scholar 

  31. G Öztürk, I Kişi and S Büyükkütük Adv. Appl. Clifford Algebras 27 1659 (2017)

    MathSciNet  Google Scholar 

  32. S Buyukkutuk, I Kisi and G. Ozturk New Trends Math. Sci. 5 61 (2017)

    Google Scholar 

  33. S Büyükkütük and G Öztürk Bull. Math. Anal. Appl. 9 12 (2017)

    MathSciNet  Google Scholar 

  34. Y Ünlütürk and S Yılmaz TWMS J. Appl. Eng. Math. 8 330 (2018)

    Google Scholar 

  35. Y Ünlütürk and S Yılmaz J. Math. Anal. Appl. 440 561 (2016)

    MathSciNet  Google Scholar 

  36. T Körpınar Zeitschrift für Naturforschung A 70 477 (2015)

    ADS  Google Scholar 

  37. T Körpınar and E Turhan Differ. Equ. Dyn. Syst. 21 281 (2013)

    MathSciNet  Google Scholar 

  38. T Körpınar J. Dyn. Syst. Geom. Theor. 15 15 (2017)

    MathSciNet  Google Scholar 

  39. T Körpınar J. Adv. Phys. 7 257 (2018)

    Google Scholar 

  40. T Körpınar Int. J. Theor. Phys. 54 1762 (2015)

    Google Scholar 

  41. T Körpınar, R C Demirkol and V Asil Revista Mexicana deFisica 64 176 (2018)

    Google Scholar 

  42. T Körpınar Indian J. Phys. https://doi.org/10.1007/s12648-019-01462-2 (2019)

    Article  Google Scholar 

  43. L R Bishop Am. Math. Mon. 82 246 (1975)

    Google Scholar 

  44. M P Carmo Differential Geometry of Curves and Surfaces (New Jersey: Prentice-Hall) (1976)

    MATH  Google Scholar 

  45. C Ekici, H Tozak and M Dede J. Math. Anal. 8 1 (2017)

    MathSciNet  Google Scholar 

  46. M Dede, C Ekici and H Tozak Int. J. Algebra 9 527 (2015).

    Google Scholar 

  47. M Dede, C Ekici and İ A Güven Gazi Univ. J. Sci. 31 202 (2018)

    Google Scholar 

  48. T Körpinar and R C Demirkol Math. Methods Appl. Sci. 42 3069 (2019)

    ADS  MathSciNet  Google Scholar 

  49. S Baş and T Körpınar Mathematics 7 195 (2019)

    Google Scholar 

  50. M T Sarıaydın and T Körpinar Afr. Mat. 30 209 (2019)

    MathSciNet  Google Scholar 

  51. T Körpinar S Baş J. Adv. Phys. 7 427 (2018)

    Google Scholar 

  52. T Körpinar, R C Demirkol Acta Sci. Technol. 40 e35493 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talat Körpinar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T. A new optical Heisenberg ferromagnetic model for optical directional velocity magnetic flows with geometric phase. Indian J Phys 94, 1409–1421 (2020). https://doi.org/10.1007/s12648-019-01596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01596-3

Keywords

PACS Nos.

Navigation