Skip to main content
Log in

Effects of chirped barrier thickness on InGaN/GaN and InGaN/InGaN MQW LEDs

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we present the effect of chirped barrier on the optical properties of InGaN/GaN and InGaN/InGaN multi quantum wells (MQWs) based light-emitting diodes. It is observed that the chirped barrier configuration of InGaN/GaN and InGaN/InGaN MQWs leads to enhanced performance in terms of reduced leakage current, IQE droop, polarization charges at interfaces, increased Hole injection, better carrier distribution, increased carrier wave function overlap, etc. The InGaN/InGaN chirped barrier configuration has shown the best results among all the four LED structures considered in this study. The IQE droop is reduced from 14 to 1% in InGaN/InGaN chirped MQWs as compared to the conventional InGaN/GaN MQWs. The carrier wave function overlap has improved from 19 to 41%. The Electron potential height has also enlarged from 394 to 530 meV, while the Hole potential height has condensed from 220 to 100 meV at 200 A cm−2. The Electron leakage current flux has reduced from 176 to 6 A cm−2 while the Hole injection flux has increased from 825 to 1000 A cm−2 at 1000 A cm−2 current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T Wu et al Appl. Sci. 8 1557 (2018)

    Article  Google Scholar 

  2. J Bhardwaj et al Phys. Status solidi (a) 214 1600826 (2017)

    Article  ADS  Google Scholar 

  3. I Paucek et al Sustainability 12 7516 (2020)

    Article  Google Scholar 

  4. S C Shi and W K Huang Sens. Mater. 29 1569 (2017)

    Google Scholar 

  5. J Piprek Materials 13 5174 (2020)

    Article  ADS  Google Scholar 

  6. S Zhu et al Appl. Phys. Lett. 111 171105 (2017)

    Article  ADS  Google Scholar 

  7. H Hu, S Zhou, H Wan, X Liu, N Li and H Xu Sci. Rep. 9 1 (2019)

    Article  Google Scholar 

  8. S Lu et al Nanoscale Res. Lett. 16 1 (2021)

    Article  ADS  Google Scholar 

  9. A C Espenlaub, D J Myers, E C Young, S Marcinkevicius, C Weisbuch and J S Speck J. Appl. Phys. 126 184502 (2018)

    Article  ADS  Google Scholar 

  10. A Mc Allister, D Bayerl and E Kioupakis Appl. Phys. Lett. 112 251108 (2018)

    Article  ADS  Google Scholar 

  11. S Dang, C Li, M Lu, H Guo and Z He Optik 155 26 (2018)

    Article  ADS  Google Scholar 

  12. A Pandey, J Gim, R Hovden and Z Mi Appl. Phys. Lett. 118 241109 (2021)

    Article  ADS  Google Scholar 

  13. D P Han, J I Shim and K S Kim Appl. Phys. Express 9 081002 (2016)

    Article  ADS  Google Scholar 

  14. Z Ren et al IEEE Photonics J. 11 1 (2019)

    Google Scholar 

  15. H S ElGhoroury, M Yeh, J C Chen, X Li and C L Chuang AIP Adv. 6 075316 (2016)

    Article  ADS  Google Scholar 

  16. B R Leduc, K Barros, T Lookman and C J Humphreys Sci. Rep. 6 1 (2016)

    Article  Google Scholar 

  17. Z H Zhang et al Nanoscale Res. Lett. 13 1 (2018)

    Article  ADS  Google Scholar 

  18. M A Maur, A Pecchia, G Penazzi, W Rodrigues and A D Carlo Phys. Rev. Lett. 116 027401 (2016)

    Article  ADS  Google Scholar 

  19. B C Lin et al IEEE Photonics Technol. Lett. 25 2062 (2013)

    Article  ADS  Google Scholar 

  20. N Liu et al J. Semicond. 35 024010 (2014)

    Article  Google Scholar 

  21. H Dong et al Opt. Laser Technol. 129 106309 (2020)

    Article  Google Scholar 

  22. E A Clinton, E Vadiee, C A M Fabien, M W Moseley, B P Gunning and W A Dolittle Solid-State Electron. 136 3 (2017)

    Article  ADS  Google Scholar 

  23. C Lynsky et al Phys. Rev. Appl. 17 054048 (2022)

    Article  ADS  Google Scholar 

  24. H Karan, A Biswas and M Saha Opt. Commun. 400 89 (2017)

    Article  ADS  Google Scholar 

  25. H Althib Results Phys. 22 103943 (2021)

    Article  Google Scholar 

  26. L Quanjiang et al ACS Photonics 6 130 (2019)

    Article  Google Scholar 

  27. A Gorai, S Panda and D Biswas Optik 140 665 (2017)

    Article  ADS  Google Scholar 

  28. C Du et al Sci. Rep. 6 1 (2016)

    Article  Google Scholar 

  29. G Muziol et al Acs Photonics 6 1963 (2019)

    Article  Google Scholar 

  30. W Tian et al IEEE Photonics J. 5 8200609 (2013)

    Article  ADS  Google Scholar 

  31. M Pisco, A Iadicicco, S Campopiano, A Cutolo and A Cusano J. Light Wave Technol. 26 1613 (2008)

    Article  ADS  Google Scholar 

  32. R Nagarajan and J E Bowers Phys. Simul. OptoElectronic Devices II 2146 198 (1994)

    ADS  Google Scholar 

  33. I S Romanov et al Russ. Phys. J. 58 996 (2015)

    Article  Google Scholar 

  34. I Gorczyca, T Suski, N E Christensen and A Svane J. Phys. Condens. Matter 30 063001 (2018)

    Article  ADS  Google Scholar 

  35. S A Nikishin Appl. Sci. 8 2362 (2018)

    Article  Google Scholar 

  36. X Huang et al Acs Nano 10 5145 (2016)

    Article  Google Scholar 

  37. C Liu et al IEEE Photonics Technol. Lett. 26 134 (2014)

    Article  ADS  Google Scholar 

  38. A Paliwal, K Singh and M Mathew IET OptoElectron 13 254 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge CSIR, New Delhi for supporting and sponsoring the project (HCP 0034). Authors are grateful to the Director, CSIR-CEERI for his support in this work. Authors are also thankful to members of Semiconductor Device Fabrication Group for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldip Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumder, I., Sapra, K., Paliwal, A. et al. Effects of chirped barrier thickness on InGaN/GaN and InGaN/InGaN MQW LEDs. Indian J Phys 97, 3653–3660 (2023). https://doi.org/10.1007/s12648-023-02677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02677-0

Keywords

Navigation