Skip to main content

Advertisement

Log in

Generation of Energy from Sugarcane Bagasse by Thermal Treatment

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The worldwide harvest of sugarcane for sucrose production represents a major agricultural industry, with approximately Mt 1500 produced annually. The cane yields about 13.5% of its weight as sugar, together with an equal amount (dry weight) of fibrous bagasse as waste. The bagasse, which is predominantly cellulose, is burned at the mills to generate steam for sugar processing. The global drive towards renewable energy has seen bagasse recognised as a large resource of readily-available fuel which could be better utilised to generate electricity. This review examines current methods of burning the bagasse for steam generation, and also the possibilities for steam gasification to produce a biogas suitable for combustion in gas turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Anon: ec.europa.eu/energy/renewables/bioenergy. (2005)

  2. Babu, S.P. Observation on the current status of biomass gasification. In IEA Task 33 ‘Thermal Gasification of Biomass’ www.IEA/HSEworkshop5_06/. (2006)

  3. Bain, R.L., Amos, W.A., Downing, M., Perlack, R.L.: Highlights of Biopower Technical Assessment: State of the Industry and Technology. National Renewable Energy laboratory, NREL/TP-510-33502 (2003)

  4. Barroso, J., Barreras, F., Amaveda, H., Lozano, A.: On the optimisation of boiler efficiency using bagasse as fuel. Fuel 82, 1451–1463 (2003)

    Article  Google Scholar 

  5. Bridgewater, A.V.: The technical and economic feasibility of biomass gasification for power generation. Fuel 74, 631–653 (1995)

    Article  Google Scholar 

  6. Capablo, J., Jensen, P.A., Pedersen, K.H., Hjuler, K., Nikolaisen, L., Backman, R., Frandsen, F.: Ash properties of alternative biomass. Energy Fuels 23, 1965–1976 (2009)

    Article  Google Scholar 

  7. Çengel, Y.A., Boles, M.A.: Thermodynamics—An Engineering Approach, 4th edn. McGraw Hill, Boston (2002)

    Google Scholar 

  8. Craig, K.R., Mann M.K.: Cost and Performance Analysis of Biomass-based Integrated Gasification Combined-Cycle (BIGCC) Power Systems. National Renewable Energy Laboratory, Report NREL/TP-430-21657 (October 1996)

  9. Dixon, T.F., Hobson, P.A., Joyce, J.A., Pohl, J.H., Stanmore, B.R. Spero, C.: Electricity Cogeneration and Greenhouse Gas Abatement in the Sugar Industry. Qld Biomass Energy Group, 86 pp (1998)

  10. Dixon, T.F., Mann, A.P., Plaza, F., Gilfillan, W.E.: Development of advanced technology for biomass combustion–CFD as an essential tool. Fuel 84, 1303–1311 (2005)

    Article  Google Scholar 

  11. Husain, Z., Zainal, Z.A., Abdullah, M.Z.: Analysis of biomass-residue-based cogeneration system in palm oil mills. Biomass Bioenergy 24, 117–124 (2003)

    Article  Google Scholar 

  12. Joyce, J.A., Dixon, T.F.: Bagasse and cane trash combustion: where to next? Proc. Aust. Soc. Sugar Cane Technol. 28 (2006)

  13. Kaushal, P., Pröll, T., Hofbauer, H.: Model for biomass char combustion in the riser of a dual fluidised bed gasification unit: Part II—model validation and parameter variation. Fuel Proc. Tech. 89, 660–666 (2008)

    Article  Google Scholar 

  14. M. Luo: Combustion of bagasse in a sugar mill boiler. Ph.D. Thesis, University of Queensland (1993)

  15. Luo, M., Stanmore, B.R.: The combustion characteristics of char from pulverised bagasse. Fuel 71, 1074–1076 (1992)

    Article  Google Scholar 

  16. Luo, M., Stanmore, B.R.: Modelling combustion in a bagasse-fired furnace 1: formulation and testing of the model. J. Inst. Energy. 67, 128–135 (1994)

    Google Scholar 

  17. Luo, M., Stanmore, B.R., Dixon, T.F.: Modelling combustion in corner-fired sugar mill boilers. Proc. Aust. Soc. Sugar Cane Technol. 19, 466–472 (1997)

    Google Scholar 

  18. Mann, A., Dixon, T.F., Plaza, F., Joyce, J.A.: Opportunities for improving performance and reducing the costs of bagasse-fired boilers. In: Hogarth, D.M. (ed) Proceedings XXV Congress of the International Society of Sugar Cane Technologists, Guatemala City, pp 241–247 (2005)

  19. Ponce, N., Friedman, P., Leal, D.: Geometries and density of bagasse particles. Int. Sugar J. 85, 291 (1983)

    Google Scholar 

  20. Ramjeawon, T.: Life cycle assessment of electricity generation from bagasse in Mauritius. J. Clean. Prod. 16, 1727–1734 (2008)

    Article  Google Scholar 

  21. Shanmukharadhya, K.S., Ramachandran, K.: Numerical and experimental investigations for optimisation of plant capacity for bagasse fired furnace. J. Inst. Energy 82, 69–75 (2009)

    Article  Google Scholar 

  22. Shanmukharadhya, K.S., Ramachandran, K.: Thermal degradation behaviour of bagasse particles. J. Inst. Energy 82, 120–122 (2009)

    Article  Google Scholar 

  23. Stanmore, B.R., Arici, P.: The convective drying of bagasse in a boiler. Int. Sugar J. 99, 71–75 (1997)

    Google Scholar 

  24. Stanmore, B.R., Dixon, T., Hobson, P., Spero, C., Pohl J.: Bagasse—a major renewable Queensland energy resource. Int. Power and Energy Conf., Churchill, Victoria, Paper 89 (1999)

  25. Stubington, J.F., Aiman, S.: The pyrolysis kinetics of bagasse at high heating rates. Energy Fuels 8, 194–203 (1994)

    Article  Google Scholar 

  26. Teixeira, F.N., Lora, E.S.: Experimental and analytical evaluation of NO x emissions in bagasse boilers. Biomass Bioenergy 26, 571–577 (2004)

    Article  Google Scholar 

  27. Wakamura, Y.: Utilisation of bagasse energy in Thailand. Mitig. Adapt. Strat. Glob. Change 8, 253–260 (2003)

    Article  Google Scholar 

  28. Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., Siagi, Z.: Combustion of agricultural residues. Prog. Energy Comb. Sci. 26, 1–27 (2000)

    Article  Google Scholar 

  29. Wikipedia “Sugar cane”. Accessed 2009

  30. Woodfield, P.L., Kent, J.H., Dixon, T.F.: Computational modelling of combustion instability in bagasse-fired furnaces. Exp. Thermal Fluid Sci. 21, 17–25 (2000)

    Article  Google Scholar 

  31. Zhou, H., Jensen, P.A., Frandsen, F.J.: Dynamic mechanistic model of superheater deposit growth and shedding in a biomass fired grate boiler. Fuel 86, 1519–1533 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Stanmore.

Additional information

B. R. Stanmore formerly with University of Queensland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanmore, B.R. Generation of Energy from Sugarcane Bagasse by Thermal Treatment. Waste Biomass Valor 1, 77–89 (2010). https://doi.org/10.1007/s12649-009-9000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-009-9000-3

Keywords

Navigation