Skip to main content
Log in

Mobility of Metals and Valorization of Sorted Fine Fraction of Waste After Landfill Excavation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Reclamation of landfills and dumpsites requires detailed technical and economic evaluation of actual and potential pollution at the site, including detection of the main contaminants, their concentration, chemical stability and mobility in the environment. Contamination with metallic elements and metalloids is among the most important problems that limits recultivation of landfills and dumpsites and reuse of landfilled materials. This study was implemented at the Kudjape Municipal Landfill, located on Saaremaa Island in Estonia. The Kudjape Landfill is a partly closed landfill recultivated by covering it with a layer of a fine fraction of landfill material after the landfill mining operations. The fine fraction was derived at the site by sorting the landfill material (i.e., disposed waste) using mechanical screening, manual sorting and sieving. Obtained relatively homogeneous material, consisting of particles smaller than 10 mm, was defined as a fine fraction of waste. Samples from the fine fraction at different depth were collected and analyzed. Metal mobility was assessed after the sequential extraction. Results revealed that such elements as Zn, Mn, Mg are found in various fractions; Fe, Cd, Cr—mainly in residual fraction; Cu, Pb, Ni, Ba, Co and Rb mostly in fractions of residuals and reduced compounds, but they are presented in larger proportion of acid and water soluble fractions. Slight interconnection of detected parameters and sampling depth was revealed. Sequential extraction of elements in the fine fraction suggested the valorization of waste and confirmed that such landfill material can be successfully used as a landfill-covering layer under the specific engineering circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kabata-Pendias, A.: Trace Elements in Soils and Plants. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  2. Krook, J., Svensson, N., Eklund, M.: Landfill mining: a critical review of two decades of research. Waste Manage. 32, 513–520 (2012)

    Article  Google Scholar 

  3. Jones, P.T., Geysen, D., Tielemans, Y., van Passel, S., Pontikes, Y., Blanpain, B., Quaghebeur, M., Hoekstra, N.: Enhanced landfill mining in view of multiple resource recovery: a critical review. J. Clean. Prod. 55, 45–55 (2013)

    Article  Google Scholar 

  4. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Official J. Eur. Communities 182, 1–19 (1999)

  5. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Official J. Eur. Communities 312, 3–30 (2008)

  6. Burlakovs, J., Kriipsalu, M., Arina, D., Kaczala, F., Shmarin, S., Denafas, G., Hogland, W.: Former dump sites and the landfill mining perspectives in Baltic countries and Sweden: the status. 13th SGEM GeoConf. Proc. Sci. Tec. Geol. Explor. Mining 1, 485–492 (2013)

    Google Scholar 

  7. Knödel, K., Lange, G., Voigt, H.-J.: Environmental Geology. Handbook of Field Methods and Case Studies. Springer, Berlin (2007)

    Google Scholar 

  8. Stenis, J., Hogland, W.: Optimization of mining by application of the equality principle. Resour. Policy 36(3), 285–292 (2011)

    Article  Google Scholar 

  9. Hogland, W.: Remediation of an old landfill site: soil analysis, leachate quality and gas production. Environ. Sci. Pollut. Res. Int. 1, 49–54 (2002)

    Article  Google Scholar 

  10. Murphy, R.J.: New technologies offer life-extending solutions for landfills. EM Air Waste Manage. Assoc. Mag. Environ. Managers 37–38 (2000)

  11. Alvarez-Cohen, L., Speitel, G.E.: Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12(2), 105–126 (2001)

    Article  Google Scholar 

  12. Coppenet, M., Juste, C.: Trace elements essential to the growth of plants and toxicity phenomena. In: Bonneau, M., Souchier, B. (eds.) Constituents and Properties of Soils, pp. 458–466. Masson, Paris (1982)

    Google Scholar 

  13. Kleczkowski, M., Kluciński, W., Sikora, J., Zdanowicz, M.: Role of antioxidants in the protection against oxidative stress in cattle–trace elements and enzymatic mechanisms (part 3). Pol. J. Vet. Sci. 7, 233–240 (2004)

    Google Scholar 

  14. Dissanayake, C.B., Chandrajith, R.: Introduction to Medical Geology. Springer, Dordrecht (2009)

    Book  Google Scholar 

  15. Conca, J.L., Lu, N., Parker G., Moore, B., Adams, A.: PIMS—remediation of metal contaminated waters and soils. Proc. 2nd Int. Conf. Remed. Chlorin. Recalcitr. Compds (2000)

  16. Gilucis, A.: Relevancies of content and distribution of trace and major elements in topsoils of Latvia. Doctoral thesis. University of Latvia, Riga (2007)

  17. Marella, G., Raga, R.: Use of the contingent valuation method in the assessment of a landfill mining project. Waste Manage. 34(7), 1199–1205 (2014)

    Article  Google Scholar 

  18. Geysen, D., Jones, P.T., van Acker, K., van Passel, S., Craps, M., Eyckmans, J., Vrancken, K., Laenen, B., Laevers, P.: Enhanced landfill mining—a future perspective for landfilling. Proc. 12th Int. Waste Manage. Landfill Symp. (2009)

  19. Wagner, J., Bilitewski, B.: The temporary storage of municipal solid waste—recommendations for a safe operation of interim storage facilities. Waste Manage. 29, 1693–1701 (2009)

    Article  Google Scholar 

  20. Ibrahim, M.A., Hogland, W.: Organizing preliminary storage sites of organic material waste fuels and recyclables and their separating distance from populated areas. J. Mater. Cycles Waste Manage. 16(2), 270–281 (2014)

    Article  Google Scholar 

  21. Kurian, J., Nagendran, R., Palanivelu, K., Thanasekaran, K., Visvanathan, C.: Dumpsite Rehabilitation and Landfill Mining. Centre for Environmental Studies of Anna University, Chennai (2004)

    Google Scholar 

  22. Savage, M.G., Gouleke, C.G., Stein, E.L.: Landfill mining—past and present. BioCycle 34, 58–61 (1993)

  23. Hogland, W.: Workshop on Landfill Mining. Havsbad, Piteaa (1996)

    Google Scholar 

  24. Hogland, W., Salerni, E., Thoerneby, L., Gomes, M.: Landfill mining in Europe and USA. The state of the art. WASTECON’96, Durban, pp. 570–582 (1996)

  25. Cossu, R., Hogland, W., Salerni, E.: Landfill mining in Europe and USA. ISWA Yearbook’96, pp. 107–114 (1996)

  26. Rettenberger, G.: Results from landfill mining demonstration project. Proc. Sardinia 5th Int. Landfill Symp. 3, 827–840 (1995)

    Google Scholar 

  27. Hogland, W., Jagodzinski, K., Meijer, J.E.: Landfill mining tests in Sweden. Sardinia 5th Int. Landfill Symp. 3, 783–794 (1995)

    Google Scholar 

  28. Cossu, R., Motzo, G.M., Laudadio, M.: Preliminary study for a landfill mining project in Sardinia. Sardinia 5th Int. Landfill Symp. 3, 841–850 (1995)

    Google Scholar 

  29. VAC20-160-10. Definitions. Virginia General Assembly 18(18), 160 (2002)

  30. Kabata-Pendias, A., Pendias, H.: Trace Elements in Soils and Plants. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  31. Yadav, S., Srivastava, V., Banerjee, S., Gode, F., Sharma, Y.C.: Studies on the removal of nickel from aqueous solutions using modified riverbed sand. Environ. Sci. Pollut. Res. 20(1), 558–567 (2013)

    Article  Google Scholar 

  32. Yin, C.-Y., Mahmud, H.B., Shaaban, M.G.: Stabilization/solidification of lead-contaminated soil using cement and rice husk ash. J. Hazard. Mater. 137B, 1758–1764 (2006)

    Article  Google Scholar 

  33. Swedish Waste Management Manual for Pick Analysis of Household Waste (RVF Utveckling 2005:19, in Swedish). Avfall Sverige, Malmö (2005)

  34. Pansu, M., Gautheyrou, J.: Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods. Springer, Berlin (2006)

    Google Scholar 

  35. Mester, Z., Sturegon, R.: Sample Preparation for Trace Element Analysis. Elsevier, Amsterdam (2003)

    Google Scholar 

  36. Lake, D.L., Kirk, P.W.W., Lester, J.N.: Fractionation, characterization, and speciation of heavy metals in sewage sludge and sludge-amended soils: a review. J. Environ. Qual. 13(2), 175–183 (1984)

    Article  Google Scholar 

  37. Ure, A.M., Davidson, C.M.: Chemical Speciation in the Environment. Blackie, London (1995)

    Google Scholar 

  38. Tessier, A., Campbell, P.G.C., Bisson, M.: Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51(7), 844–851 (1979)

    Article  Google Scholar 

  39. Øygard, J.K., Gjengedal, E., Mobbs, H.J.: Trace element exposure in the environment from MSW landfill leachate sediments measured by a sequential extraction technique. J. Hazard. Mater. 153(1–2), 751–758 (2008)

    Article  Google Scholar 

  40. Zhong, L., Liu, L., Yang, J.: Characterization of heavy metal pollution in the paddy soils of Xiangyin County, Dongting lake drainage basin, central south China. Environ. Earth Sci. 67(8), 1–8 (2012)

    Article  Google Scholar 

  41. Sahuquillo, A., Rigol, A., Rauret, G.: Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends Anal. Chem. 22(3), 152–159 (2003)

    Article  Google Scholar 

  42. Mossop, K.F., Davidson, C.M.: Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta 478(1), 111–118 (2003)

    Article  Google Scholar 

  43. Cuong, D.T., Obbard, J.P.: Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Appl. Geochem. 21(8), 1335–1346 (2006)

    Article  Google Scholar 

  44. Norris, P., Chen, C.W., Pan, W.P.: A technique for sequential leaching of coal and fly ash resulting in good recovery of trace elements. Anal. Chim. Acta 663(1), 39–42 (2010)

    Article  Google Scholar 

  45. Kollikkathara, N., Feng, H., Stern, E.: A purview of waste management evolution: special emphasis on USA. Waste Manage. 29(2), 974–985 (2009)

    Article  Google Scholar 

  46. Zhao, Y., Song, L., Huang, R., Song, L., Li, X.: Recycling of aged refuse from a closed landfill. Waste Manage. Res. 25(2), 130–138 (2007)

    Article  Google Scholar 

  47. Hogland, W., Marques, M., Nimmermark, S.: Landfill mining and waste characterization: a strategy for remediation of contaminated areas. J. Mater. Cycles Waste Manage. 6(2), 119–124 (2004)

    Article  Google Scholar 

  48. Smith, L.A., Means, J.L., Chen, A., Alleman, B., Chapma, C.C., Tixier Jr, J.S., Brauning, S.E., Gavaskar, A.R., Royer, M.D.: Remedial Option for Metals-Contaminated Sites. CRC Press, Boca Raton (1995)

    Google Scholar 

Download references

Acknowledgments

International cooperation was financially supported by the Swedish Institute within the project Closing the Life Cycle of LandfillsLandfill Mining in the Baltic Sea Region for Future. The study was also supported by the European Cohesion Fund, the Estonian Environmental Investment Centre, OÜ Saaremaa Prügila Ltd., RTS-Infra Ltd., Geo IT Ltd., municipalities of Kaarma, Pihtla and Kuresaare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris Burlakovs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlakovs, J., Kaczala, F., Vincevica-Gaile, Z. et al. Mobility of Metals and Valorization of Sorted Fine Fraction of Waste After Landfill Excavation. Waste Biomass Valor 7, 593–602 (2016). https://doi.org/10.1007/s12649-016-9478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9478-4

Keywords

Navigation