Skip to main content
Log in

The Integrated Process of Microbial Ensiling and Hot-Washing Pretreatment of Dry Corn Stover for Ethanol Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, we used dry corn stover (DCS) silage as feedstock to produce ethanol using hot-washing treatment (HWT) followed by prehydrolysis and fed-batch simultaneous saccharification and fermentation (FD-SSF) using cellulase and Saccharomyces cerevisiae. The inoculants product for ensiling of DCS was composed of lactic acid-producing organisms, such as Lactobacillus casei, Lactobacillus fermentum and Enterococcus durans. Moreover, the appropriate condition was selected by the dynamic analysis of silage quality. Among test conditions, the pH value (4.22), pretreatment time (4 week) and the content of lactic acid in DCS silage (4.32%) could be considered as important indicators of the success of microbial ensiling. The 16S rRNA gene-based pyrosequencing was used to analyze the community of the resulting silage, and the results indicated that Lactobacillus was the advantageous species. The observed glass transition temperature (Tg) value for DCS silage occurred at a temperature of 124.2 °C (Tmid). DCS silage was hydrothermally treated at temperature of Tg for 20 min. It was proved that biomass can be pretreated for cellulosic ethanol production by the integrated process of microbial ensiling and HWT. Ethanol fermentation of HWT-treated (at 30% glucan loading) DCS silage hydrolyzate (resulting in 61.92 g/L ethanol at 59.15% metabolic yield of FD-SSF) was reported in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chundawat, S.P., Beckham, G.T., Himmel, M.E.: Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. 2(1), 21–45 (2011)

    Article  Google Scholar 

  2. Sun, S., Wen, J., Ma, M., Sun, R.: Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments. Appl. Energy. 136, 519–526 (2014)

    Article  Google Scholar 

  3. Ruiz, E., Cara, C., Manzanares, P., Ballesteros, M., Castro, E.: Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme Microb. Technol. 42, 160–166 (2008)

    Article  Google Scholar 

  4. Chen, W., Tu, Y., Sheen, H.K.: Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwaveassisted heating. Appl. Energy 88, 2726–2734 (2011)

    Article  Google Scholar 

  5. Lima C.S.S., Conceição, M.M., Silva FLH, Lima, E.E., Conrado, L.S., Leão, D.A.: Characterization of acid hydrolysis of sisal. Appl. Energy 102, 254–259 (2013)

    Article  Google Scholar 

  6. Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi, G.H., Gholami, M.: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27, 77–93 (2013)

    Article  Google Scholar 

  7. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010)

    Article  Google Scholar 

  8. Zhang, X., Yu, H., Huang, H., Liu, Y.: Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeterior Biodegrad. 60, 159–164 (2007)

    Article  Google Scholar 

  9. Wan, C.X., Li, Y.B.: Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb. Technol. 47, 31–36 (2010)

    Article  Google Scholar 

  10. Shinners, K.J., Wepner, A.D., Muck, R.E., Weimer, P.J.: Aerobic and anaerobic storage of single-pass, chopped corn stover. Bioenergy Res. 4(1), 61–75 (2011)

    Article  Google Scholar 

  11. Shinners, K.J., Binversie, B.N., Muck, R.E., Weimer, P.J.: Comparison of wet and dry corn stover harvest and storage. Biomass Bioenerg. 31(4), 211–221 (2007)

    Article  Google Scholar 

  12. Holzer, M., Mayrhuber, E., Danner, H., Braun, R.: The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol. 21, 282–289 (2003)

    Article  Google Scholar 

  13. Keller, F.A., Hamilton, J.E., Nguyen, Q.A.: Microbial pretreatment of biomass potential for reducing severity of thermochemical biomass pretreatment. Appl. Biochem. Biotechnol. 105–108, 27–41 (2003)

    Article  Google Scholar 

  14. Wan, C. X., Li, Y. B.: Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour. Technol. 101, 6398–6403 (2010)

    Article  Google Scholar 

  15. Fenlon, D.R., Henderson, A.R., Rooke, J.A.: The fermentative preservation of grassed and forage crops. J. Appl. Bacteriol. 79, 118–131 (1995)

    Google Scholar 

  16. Graves, T., Narendranath, N.V., Dawson, K., Power, R.: Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J. Ind. Microbiol. Biotechnol. 33(6), 469–474 (2006)

    Article  Google Scholar 

  17. Chen, Y., Sharma-Shivappa, R.R., Chen, C.: Ensiling agricultural residues for bioethanol production. Appl Biochem. Biotech. 143, 80–92 (2007)

    Article  Google Scholar 

  18. Sun, S., Cao, X., Sun, S., Xu, F., Song, X., Sun, R., Jones, G.L.: Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnol. Biofuels 7, 116–128 (2014)

    Google Scholar 

  19. Ko, J.K., Kim, Y., Ximenes, E., Ladisch, M.R.: Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 112, 252–262 (2015)

    Article  Google Scholar 

  20. Yang, X., Li, H.L., Ma, X.J., Cheng, J.Y., Fang, S.Q.: Effects of hot-washing process on structure and enzymatic hydrolysis of treated steam explosion corn stover. Bioresour. Bioprocess. 3, 39–47 (2016)

    Article  Google Scholar 

  21. Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D.: Determination of structural carbohydrates and lignin in biomass. NREL Technical Report. REL/TP-510-42618 (Version 07.08.2011). National Renewable Energy Laboratory; 1 Boulder, Colorado (2011)

  22. Megías, M.D., Hernández, F., Cano, J., Martinez-Teruel, A., Gallego, J.A.: Effects of different additives on the cell wall and mineral fractions of artichoke (Cynara scolymus L.) and orange (Citrus aurantium L.) by-product silage. J. Sci. Food Agric. 76, 173–181 (1998)

    Article  Google Scholar 

  23. Ambye-Jensen, M., Thomsen, S.T., Kádár, Z., Meyer, A.S.: Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment. Biotechnol. Biofuels. 6, 116–125 (2013)

    Article  Google Scholar 

  24. Holzer, M., Mayrhuber, E., Danner, H., Braun, R.: The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol. 21(6), 282–287 (2003)

    Article  Google Scholar 

  25. Danner, H., Holzer, M., Mayrhuber, E., Braun, R.: Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microb. 69(1), 562–567 (2003)

    Article  Google Scholar 

  26. Penttilä, P.A., Várnai, A., Pere, J., Tammelin, T., Salmén, L., Siika-aho, M., et al.: Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Bioresour. Technol. 129, 135–141 (2013)

    Article  Google Scholar 

  27. Marcinakova, M., Laukova, A., Simonova, M., Strompfova, V., Korenekova, B., Nad, P.: A new probiotic and bacteriocin-producing strain of Enterococcus faecium EF9296 and its use in grass ensiling. Czech. J. Anim. Sci. 53(8), 336–345 (2008)

    Google Scholar 

  28. Ennahar, S., Cai, Y.M., Fujita, Y.: Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl. Environ. Microb. 69(1), 444–451 (2003)

    Article  Google Scholar 

  29. Cai, Y., Ohmomo, S., Ogawa, M., Kumai, S.: Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J. Dairy Sci. 82, 520–526 (1999)

    Article  Google Scholar 

  30. Sebastian, S., Phillip, L.E., Fellner, V., Idziak, E.S.: Comparative assessment of bacterial inoculated corn and sorghum silages. J. Anim. Sci. 71, 505–514 (1996)

    Google Scholar 

  31. Amarasekara A.S.: Handbook of Cellulosic Ethanol [M]. Elsevier, Amsterdam (2013).

    Book  Google Scholar 

  32. Pedersen, M., Meyer, A.S.: Lignocellulose pretreatment severity: relating pH to biomatrix opening. New Biotechnol. 27(6), 739–750 (2010)

    Article  Google Scholar 

  33. Samuel, R., Pu, Y., Raman, B., Ragauskas, A. J.: Structural characterization and comparison of switchgrassbass-milled lignin before and after dilute acid pretreatment. Appl. Biochem. Biotechnol. 162, 62–74 (2010)

    Article  Google Scholar 

  34. Ruel, K., Barnoud, F., Eriksson, K.E.: Ultrastructural aspects of wood degradation by Sporotrichum pulverulentum. Holzforschung 38, 61–68 (1982)

    Article  Google Scholar 

  35. Pahlow G., Muck R.E., Driehuis F., Elferink S.J.W.H.O., Spoelstra S.F.: Microbiology of ensiling. In: Buxton, D.R., Muck, R.E., Harrison, J.H. Silage Science and Technology, pp. 31–94. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Wisconsin (2003)

    Google Scholar 

  36. Palonen, H., Tjerneld, F., Zacchi, G., Tenkanen, M.: Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J. Biotechnol. 107, 65–72 (2004)

    Article  Google Scholar 

  37. Uppugundla, N., da Costa, S. L., Chundawat S.P.S., et al.: A comparative study of ethanol production using dilute acid, ionic liquid and AFEXTM pretreated corn stover. Biotechnol. Biofuels. 7, 22 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojian Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, H., Chang, C. et al. The Integrated Process of Microbial Ensiling and Hot-Washing Pretreatment of Dry Corn Stover for Ethanol Production. Waste Biomass Valor 9, 2031–2040 (2018). https://doi.org/10.1007/s12649-017-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0007-x

Keywords

Navigation