Skip to main content
Log in

Optimisation of Biodiesel Production Using Taguchi Model

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, an initiative has been taken to use Taguchi model for optimisation of reaction conditions in biodiesel production. Taguchi model helps to predict responses precisely for absent reaction combinations. Parboiled rice bran and white rice bran are considered as raw material for biodiesel production. Drying method, soxhlet temperature, sample pH, number of extraction cycle, transesterification, reaction temperature, catalyst concentration and solvent to sample ratio for fatty acid methyl ester (FAME) production were studied for lipid extraction. In case of lipid extraction, main effect plot for S/N ratio presents an optimised condition with given data. Taguchi model obtained an optimum lipid yield of 14.92 and 11.07% from parboiled and white rice bran respectively, at 55–60 °C soxhlet cell temperature, 20 number of extraction cycle, soxhlet heater temperature 100 °C, sun dried sample and pH 2, in a soxhlet extractor. During FAME production, surface and contour plots between transesterification parameters provide visualized information through graphical output for all possible responses. Taguchi model described accuracy of statistical approach for FAME yield with R2: 98.5% and R2 (adjusted): 93.7%. Taguchi optimised method resulted maximum FAME yield at transesterification temperature 60 °C, 12% (wt%) sulphuric acid, 12.5:1 methanol to lipid mass ratio (solvent/sample ratio) and initial pH 2 were 13.69 and 10.13% for parboiled rice bran and white rice bran, respectively. FAME conversion of 91.75% (dry weight basis) was achieved with Taguchi optimised parameters. The statistical method resulted an increase of 8.5 and 4.3% in lipid and FAME yield, respectively as compared to previously performed manual optimization. Taguchi method used for biodiesel production resulted in a residual error of 1.46%. Prepared rice bran methyl ester has improved biodiesel properties, i.e., cold filter plugging point, iodine value, flash point.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RBME:

Rice bran methyl ester

FAME:

Fatty acid methyl ester

RMW:

Rice mill waste

ANOVA:

Analysis of variance

wt:

Weight

POME:

Palm oil methyl ester

PSME:

Palm stearin methyl ester

CFPP:

Cold filter plugging point

FTIR:

Fourier-transform infrared spectroscopy

IV:

Iodine value

KV:

Kinematic viscosity

NOX :

Oxides of nitrogen

CN:

Cetane number

AV:

Acid value

S/S:

Solvent to sample

S/N:

Signal to noise

References

  1. Dogan, O.: The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. Fuel 90, 2467–2472 (2011). https://doi.org/10.1016/j.fuel.2011.02.033

    Article  Google Scholar 

  2. “The World Factbook”. Report: Central Intelligence Agency. https://www.cia.gov/library/publications/the-world-factbook/geos/in.html (2016). Retrieved 12 September 2016

  3. Chen, K., Wang, J., Dai, Y., Wang, P., Liou, C., Nien, C., Wu, J., Chen, C.: Rice husk ash as a catalyst precursor for biodiesel production. J. Taiwan Inst. Chem. Eng. 44, 622–629 (2013). https://doi.org/10.1016/j.jtice.2013.01.006

    Article  Google Scholar 

  4. Azeem, M.W., Hanif, M.A., Al-Sabahi, J.N., Khan, A.A., Naz, S., Ijaz, A.: Production of biodiesel from low priced, renewable and abundant date seed oil. Renew. Energy 86, 124–132 (2016). https://doi.org/10.1016/j.renene.2015.08.006

    Article  Google Scholar 

  5. Murugesan, A., Umarani, C., Chinnusamy, T.R., Krishnan, M., Subramanian, R., Neduzchezhain, N.: Production and analysis of bio-diesel from non-edible oils—a review. Renew. Sustain. Energy Rev. 13, 825–834 (2008)

    Article  Google Scholar 

  6. Kwon, E.E., Kim, S., Jeon, Y.J., Yi, H.: Biodiesel production from sewage sludge: new paradigm for mining energy from municipal hazardous material. Environ. Sci. Technol. 46, 10222–10228 (2012). https://doi.org/10.1021/es3019435

    Google Scholar 

  7. Mofijur, M., Masjuki, H.H., Kalam, M.A., Rasul, M.G., Atabani, A.E., Hazrat, M.A., Mahmudul, H.M.: Effect of biodiesel-diesel blending on physico-chemical properties of biodiesel produced from Moringa oleifera. Procedia Eng. 105, 665–669 (2015). https://doi.org/10.1016/j.proeng.2015.05.046

    Article  Google Scholar 

  8. Mondala, A., Liang, K., Toghiani, H., Hernandez, R., French, T.: Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 100, 1203–1210 (2009). https://doi.org/10.1016/j.biortech.2008.08.020

    Article  Google Scholar 

  9. Olkiewicz, M., Torres, C.M., Jimenez, L., Font, J., Bengoa, C.: Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge. Bioresour. Technol. 214, 122–131 (2016). https://doi.org/10.1016/j.biortech.2016.04.098

    Article  Google Scholar 

  10. Shiu, P., Gunawan, S., Hsieh, W., Kasim, N.S., Ju, Y.: Biodiesel production from rice bran by a two-step in-situ process. Bioresour. Technol. 101, 984–989 (2010). https://doi.org/10.1016/j.biortech.2009.09.011

    Article  Google Scholar 

  11. Eevera, T., Pazhanichamy, K., Ramesh, D.: Environmental effects the characterization of palm and rice bran oil biodiesel to assess the feasibility for power generation. Energy Sources A 36(2), 150–157 (2014). https://doi.org/10.1080/15567036.2010.533332

    Article  Google Scholar 

  12. Memon, S.A., Shaikh, M.A., Akbar, H.: Utilization of rice husk ash as viscosity modifying agent in self compacting concrete. Constr. Build. Mater. 25, 1044–1048 (2011). https://doi.org/10.1016/j.conbuildmat.2010.06.074

    Article  Google Scholar 

  13. “Crops/Regions/World list/Production Quantity (pick lists), Rice (paddy), 2014”. UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). Retrieved 11 May 2017

  14. Lin, L., Ying, D., Chaitep, S., Vittayapadung, S.: Biodiesel production from crude rice bran oil and properties as fuel. Appl. Energy 86, 681–688 (2009). https://doi.org/10.1016/j.apenergy.2008.06.002

    Article  Google Scholar 

  15. Kumar, M., Ghosh, P., Khosla, K., Thakur, I.S.: Biodiesel production from municipal secondary sludge. Bioresour. Technol. 216, 165–171 (2016)

    Article  Google Scholar 

  16. Revellame, E., Hernandez, R., French, W., Holmes, W., Alley, E.: Biodiesel from activated sludge through in situ transesterification. J. Chem. Technol. Biotechnol. 85, 614–620 (2010). https://doi.org/10.1002/jctb.2317

    Article  Google Scholar 

  17. Satake, K., Monaka, T., Yamada, S., Endo, H., Yamagisawa, M., Abe, T.: The rapid development of diesel engine using an optimization of the fuel injection control. Mitsubishi Heavy Ind. Ltd. Tech. Rev. 45, 6–10 (2008)

    Google Scholar 

  18. Tan, Y.H., Abdullah, M.O., Nolasco-hipolito, C., Zauzi, N.A.: Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO. Renew. Energy (2017). https://doi.org/10.1016/j.renene.2017.07.024

    Google Scholar 

  19. Kuan, C., Yuen, K.: Physical, chemical and physicochemical characterization of rice husk., Br. Food J. (2014). https://doi.org/10.1108/00070701211234372

    Google Scholar 

  20. Phadke, M.S.: Quality Engineering Using Design of Experiments, Quality Control, Robust Design, and the Taguchi Method. Wadsworth & Books, Pacific Grove (1988)

    Google Scholar 

  21. Park, S.H.: Robust Design and Analysis for Quality Engineering. Chapman & Hall, London (1996)

    Google Scholar 

  22. Yang, W.H., Tarng, Y.S.: Design optimization of cutting parameters for turning operations based on the Taguchi method. J. Mater. Process. Technol. 84, 122–129 (1998)

    Article  Google Scholar 

  23. UNE-EN ISO 3104: Petroleum products. Transparent and opaque liquids. Determination of kinematic viscosity and calculation of dynamic viscosity, (1994)

  24. UNE-EN ISO 3679: Determination of flash point. Rapid equilibrium closed cup method, (2004)

  25. UNE-EN 14111: Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of iodine value, (2003)

  26. Saha, R., Gaud, V.V.: Ultrasound assisted transesterification of high free fatty acids karanja oil using heterogeneous base catalysts. Biomass Convers. Biorefinery 5(2), 195–207 (2015)

    Article  Google Scholar 

  27. Ramos, M.J., Fernandez, C.M., Casas, A., Rodriguez, L., Perez, A.: Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100, 261–268 (2009). https://doi.org/10.1016/j.biortech.2008.06.039

    Article  Google Scholar 

  28. Mittelbach, M., Remschmidt, C.: Biodiesel: The Comprehensive Handbook. Martin Mittelbach ed., Graz (2004)

    Google Scholar 

  29. Imahara, H., Minami, E., Saka, S.: Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85, 1666–1670 (2006)

    Article  Google Scholar 

  30. Van Gerpen, J.H.: Cetane number testing of biodiesel. Liquid fuels and industrial products from renewable resources. In: Proceedings of the Third Liquid Fuel Conference, 15–17 September, Nashville, Tennessee (1996)

  31. Pinzi, S., Rounce, P., Herreros, J.M., Tsolakis, A., Dorado, M.P.: The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions. Fuel 104, 170–182 (2015). https://doi.org/10.1016/j.fuel.2012.08.056

    Article  Google Scholar 

  32. Harrington, K.J.: Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 9, 1–17 (1986)

  33. Pena, A.G., Franseschi, F.A., Estrada, M.C., Ramos, V.M., Zarracino, R.G., Loría, J.C.Z., Quiroz, A.V.C.: Fourier transform infrared-attenuated total reflectance (ftir-atr) spectroscopy and chemometric techniques for the determination of adulteration in petrodiesel/biodiesel blends. Quim. Nova 37, 392–397 (2014). https://doi.org/10.5935/0100-4042.20140071

    Article  Google Scholar 

  34. Priyadarshi, D., Karar, P.K.: Utilising FTIR and gas chromatograph for optimizing lipid extraction for biodiesel production from domestic sewage sludge and food waste. Res. J. Chem. Environ. 21(8), 26–36 (2017)

    Google Scholar 

  35. Mahamuni, N.N., Adewuyi, Y.G.: Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel-biodiesel blends, and blend adulteration with soy oil. Energy Fuels 23, 3773–3782 (2009). https://doi.org/10.1021/ef900130m

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Karar Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshi, D., Paul, K.K. Optimisation of Biodiesel Production Using Taguchi Model. Waste Biomass Valor 10, 1547–1559 (2019). https://doi.org/10.1007/s12649-017-0158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0158-9

Keywords

Navigation