Skip to main content
Log in

Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO2–C2H4O2 and Sequential NaClO2–C2H4O2/Autohydrolysis Pretreatment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The search for new sources of lignocellulosic raw materials for the generation of energy and new compounds encourages the search for locations not well known and with a high potential for biomass availability as is the case of the Northeast Region of Brazil. Thus, the cactus (CAC), green coconut shell (GCS), mature coconut fibre and mature coconut shell were pretreated by NaClO2–C2H4O2 and sequential NaClO2–C2H4O2/autohydrolysis aiming at the obtention of high added-value compounds in the liquid fraction and solid phase. The yield of the solid phase was between 61.42 and 90.97% and the reduction up to 91.63% of lignin in the materials pretreated by NaClO2–C2H4O2. After NaClO2–C2H4O2/autohydrolysis pretreatment the obtained solids yield was between 43.57 and 52.08%, with a solubilization of the hemicellulose content up to 81.42%. For both pretreatments the cellulosic content remained almost unchanged. The pretreated solids were characterized by SEM, X-ray and crystallinity indexes showing significant modifications when submitted to pretreatments. These results were further confirmed by the enzymatic conversion yields of 81.68–90.03 and 86.97–90.36% of the LCMs pretreated by NaClO2–C2H4O2 and pretreated by NaClO2–C2H4O2/autohydrolysis, respectively. The resulting liquors had a total phenolic compounds content between 0.20 and 3.05 g/L, lignin recovered up to 7.40 g/L (absence of sulphur) and xylooligosaccharides between 16.13 and 20.37 g/L. Thus, these pretreatments showed an efficient fractionation of LCMs, especially in the GCS, being an important requirement for the generation of products and byproducts in the context of the biorefinery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buruiana, C.T., Vizireanu, C., Garrote, G., Parajó, J.C.: Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Ind. Crops Prod. 54, 32–39 (2014)

    Article  Google Scholar 

  2. Marzialetti, T., Salazar, J.P., Ocampos, C., Chandra, R., Chung, P., Saddler, J., Parra, C.: Second-generation ethanol in Chile: optimization of the autohydrolysis of Eucalyptus globulus. Biomass Convers. Bioref. 4, 125–135 (2014)

    Article  Google Scholar 

  3. Ertas, M., Han, Q., Jameel, H., Chang, H.: Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars. Bioresour. Technol. 152, 259–266 (2014)

    Article  Google Scholar 

  4. Xiao, X., Bian, J., Li, M.F., Xu, H., Xiao, B., Sun, R.C.: Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresour. Technol. 159, 41–47 (2014)

    Article  Google Scholar 

  5. Gonçalves, F.A., Sanjinez-Argandoña, E.J., Fonseca, G.G.: Utilization of agro-industrial residues and municipal waste of plant origin for cellulosic ethanol production. J. Environ. Protect. 2, 1303–1309 (2011)

    Article  Google Scholar 

  6. Malgas, S., Chandra, R., Van Dyk, J.S., Saddler, J.N., Pletschke, B.I.: Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods. Bioresour. Technol. 245, 52–65 (2017)

    Article  Google Scholar 

  7. Siqueira, G., Várnai, A., Ferraz, A., Milagres, A.M.F.: Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Appl. Energy 102, 399–402 (2013)

    Article  Google Scholar 

  8. Matsushita, Y., Jo, E., Inakoshi, S., Yagami, S., Takamoto, N., Fukushima, K., Lee, S.: Hydrothermal reaction of sulfuric acid lignin generated as a by-product during bioethanol production using lignocellulosic materials to convert bioactive agents. Ind. Crops Prod. 42, 181–188 (2013)

    Article  Google Scholar 

  9. Zamudio, M.A.M., Alfaro, A., de Alva, H.E., García, J.C., García-Moralesa, M., López, F.: Biorefinery of paulownia by autohydrolysis and soda-anthraquinone delignification process. Characterization and application of lignin. J. Chem. Technol. Biotechnol. 90, 534–542 (2015)

    Article  Google Scholar 

  10. Wu, C., Wang, Z., Dupont, V., Huang, J., Williams, P.T.: Nickel-catalysed pyrolysis/gasification of biomass components. J. Anal. Appl. Pyrol. 99, 143–148 (2013)

    Article  Google Scholar 

  11. Egüés, I., Sanchez, C., Mondragon, I., Labidi, J.: Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour. Technol. 103, 239–248 (2012)

    Article  Google Scholar 

  12. Gonçalves, F.A., Ruiz, H.A., dos Santos, E.S., Teixeira, J.A., de Macedo, G.R.: Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Ind. Crops Prod. 77, 1–12 (2015)

    Article  Google Scholar 

  13. Parajó, J.C., Garrote, G., Cruz, J.M., Dominguez, H.: Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol. 15(3–4), 115–120 (2004)

    Article  Google Scholar 

  14. Samala, A., Srinivasan, R., Yadav, M.: Comparison of xylo-oligosaccharides production by autohydrolysis of fibers separated from ground corn flour and DDGS. Food Bioprod Process. 94, 354–364 (2015)

    Article  Google Scholar 

  15. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J.: Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory. Golden, Colorado (2008)

    Google Scholar 

  16. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959)

    Article  Google Scholar 

  17. Garrote, G., Domínguez, H., Parajó, J.C.: Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharides production. J. Food Eng. 52, 211–218 (2002)

    Article  Google Scholar 

  18. Ruiz, H.A., Ruzene, D., Silva, D.P., da Silva, F.F., Vicente, A.A., Teixeira, J.A.: Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl. Biochem. Biotechnol. 164(5), 629–641 (2011)

    Article  Google Scholar 

  19. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods Enzymol. 299, 152–178 (1999)

    Article  Google Scholar 

  20. Gonçalves, F.A., Ruiz, H.A., dos Santos, E.S., Teixeira, J.A., de Macedo, G.R.: Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew. Energy 94, 353–365 (2016)

    Article  Google Scholar 

  21. Dowe, N., Mcmillan, J.: SSF experimental protocols-lignocellulosic biomass hydrolysis and fermentation. NERL analytical procedure. National Renewable Energy Laboratory, Golden (2001)

    Google Scholar 

  22. Gonçalves, F.A., Ruiz, H.A., Nogueira, C.C., dos Santos, E.S., Teixeira, J.A., de Macedo, G.R.: Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel 131, 66–76 (2014)

    Article  Google Scholar 

  23. Ding, T.Y., Hii, S.L., Ong, L.G.A.: Comparison of pretreatment strategies for conversion of coconut husk fiber to fermentable sugars. BioResources 7, 1540–1547 (2012)

    Google Scholar 

  24. Gulati, I., Park, J., Maken, S., Lee, M.G.: Production of carboxymethylcellulose fibers from waste lignocellulosic sawdust using NaOH/NaClO2 pretreatment. Fibers Polym. 15, 680–686 (2014)

    Article  Google Scholar 

  25. Gullón, B., Yáñez, R., Alonso, J.L., Parajó, J.C.: Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresour. Technol. 101, 6676–6684 (2010)

    Article  Google Scholar 

  26. Garrote, G., Cruz, J.M., Moure, A., Domínguez, H., Parajó, J.C.: Antioxidant activity of byproducts from the hydrolytic processing of selected lignocellulosic materials. Trends Food Sci. Technol. 15, 191–200 (2004)

    Article  Google Scholar 

  27. Ruiz, H.A., Rodríguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A.: Hydrothermal processing, as an alternative for upgrading agriculture residue and marine biomass according to the biorefinery concept: A review. Renew. Sustain. Energy Rev. 21, 35–51 (2013)

    Article  Google Scholar 

  28. Faustino, H., Gil, N., Baptista, C., Duarte, A.P.: Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors. Molecules 15, 9308–9322 (2010)

    Article  Google Scholar 

  29. Kadam, K.L., Chin, C.Y., Brwon, L.W.: Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J. Ind. Microbiol. Biotechnol. 35, 331–341 (2008)

    Article  Google Scholar 

  30. Chuck, C.J., Parker, H.J., Jenkins, R.W., Donnelly, J.: Renewable biofuel additives from the ozonolysis of lignin. Bioresour. Technol. 143, 549–554 (2013)

    Article  Google Scholar 

  31. Fernandes, D.M., Hechenleitner, A.A.W., Job, A.E., Radovanocic, E., Gomez Pineda, E.A.: Thermal and photochemical stability of poly(vinyl alcohol)/modified lignin blends. Polym. Degrad. Stab. 91, 1192–1201 (2006)

    Article  Google Scholar 

  32. Fang, X., Yano, S., Inoue, H., Sawayama, S.: Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J. Biosci. Bioeng. 107, 256–261 (2009)

    Article  Google Scholar 

  33. Ghatak, H.R.: Spectroscopic comparison of lignin separated by electrolysis and acid precipitation of wheat straw soda black liquor. Ind Crop Prod. 28, 206–212 (2008)

    Article  Google Scholar 

  34. Schorr, D., Diouf, P.N., Tatjana, S.: Evaluation of industrial lignins for biocomposites production. Ind. Crops Prod. 52, 65–73 (2014)

    Article  Google Scholar 

  35. Sun, Y.C., Xu, J.K., Xu, F., Sun, R.C.: Efficient separation and physicochemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent. Ind. Crops Prod. 47, 77–85 (2013)

    Article  Google Scholar 

  36. Jahan, M.S., Chowdhury, D.A.N., Islam, M.K., Moeiz, S.M.I.: Characterization of lignin isolated from some nonwood available in Bangladesh. Bioresour. Technol. 98, 465–469 (2007)

    Article  Google Scholar 

  37. Sun, R., Tomkinson, J., Zhu, W., Wang, S.Q.: Delignification of maize stem by peroxymonosulfuric acid, peroxyformic acid, peracetic acid and hydrogen peroxide. 1. Physicochemical and structural characterization of the solubilized lignins. J. Agric. Food Chem. 48, 1253–1262 (2000)

    Article  Google Scholar 

  38. Faix, O.: Fourier transform infrared spectroscopy. In: Lin, S.Y., Dence, C.W. (eds.) Methods in lignin chemistry, p. 81. Springer, Berlin (1992)

    Google Scholar 

  39. Nada, A.A.M.A., Yousef, M.A., Shaffei, K.A., Salah, A.M.: Infrared spectroscopy of some treated lignins. Polym. Degrad. Stab. 62(1), 157–163 (1998)

    Article  Google Scholar 

  40. Tan, S.S.Y., MacFarlane, D.R., Upfal, J., Edye, L.A., Doherty, W.O.S., Patti, A.F., Pringle, J.M., Scott, J.L.: Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 11, 339–345 (2009)

    Article  Google Scholar 

  41. Rencoret, J., Marques, G., Gutiérrez, A.L., Nieto, J., Jiménez-Barbero, A.T., del Río, M.J.C.: Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood. Ind. Crops Prod. 30, 137–143 (2009)

    Article  Google Scholar 

  42. Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C.G.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)

    Article  Google Scholar 

  43. Kim, H.M., Choi, Y., Lee, D., Kim, Y., Bae, H.: Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment. Bioresour. Technol. 236, 194–201 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Brazilian research funding agencies CNPq and CAPES for financial support. Financial support from the Energy Sustainability Fund 2014-05 (CONACYT-SENER), Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Cluster of Bioalcohols (Ref. 249564) is gratefully acknowledged. We also gratefully acknowledge support for this research by the Mexican Science and Technology Council (CONACYT, Mexico) for the infrastructure project - INFR201601 (Ref. 269461) and CB-2015-01 (Ref. 254808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorete Ribeiro de Macedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, F.A., Ruiz, H.A., dos Santos, E.S. et al. Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO2–C2H4O2 and Sequential NaClO2–C2H4O2/Autohydrolysis Pretreatment. Waste Biomass Valor 10, 2249–2262 (2019). https://doi.org/10.1007/s12649-018-0229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0229-6

Keywords

Navigation