Skip to main content
Log in

Improvement of Phenolic Contents and Antioxidant Activities of Longan (Dimocarpus longan) Peel Extracts by Enzymatic Treatment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study demonstrated increases in the recovery of phenolic compounds from industrial waste, longan peel, after treatment with plant matrix degrading enzymes. Pretreatment of longan peel with cellulase, α-amylase, protease, or β-glucosidase enhanced total phenolic content in the extracts, leading to increases of DPPH scavenging activity, oxygen radical absorbance capacity, antioxidant in β-carotene/linoleate system, and ferrous ion chelating activity. In detail, cellulase increased the release of free phenolics e.g. o-coumaric acid, corilagin, and quercetin as well as the release of esterified phenolics e.g. ellagic acid, and gallic acid, while β-glucosidase increased the release of free phenolics e.g. ellagic acid. Among all enzymatic pretreatments, protease provided the highest proportion of phenolics’ recovery in the extract, while only cellulase and β-glucosidase significantly improved extraction yields by 31 and 17%, respectively. These results indicated enhancement of valorization of longan peel as a resource material for functional ingredients recovery.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DM:

Dry matter

GAE:

Gallic acid equivalent

TE:

Trolox equivalent

EDTAE:

EDTA equivalent

ORAC:

Oxygen radical absorbance capacity

AAC:

Antioxidant activity coefficient

CE:

Cellulase-assisted extraction

AE:

α-Amylase-assisted extraction

PE:

Protease-assisted extraction

GE:

β-Glucosidase-assisted extraction

CGE:

Cellulase and β-glucosidase-assisted extraction

AGE:

α-Amylase and β-glucosidase-assisted extraction

CAPE:

Cellulase, α-amylase and protease-assisted extraction

CAGE:

Cellulase, α-amylase and β-glucosidase-assisted extraction

CAPGE:

Cellulase, α-amylase protease and β-glucosidase-assisted extraction

References

  1. Nguyen, V.T., Khong, T.T.: Economics and market for recovered bioactive compounds from agricultural wastes. In: Nguyen, V.T. (ed.) Recovering bioactive compounds from agricultural wastes, 1st edn, pp. 221–249. Wiley (2017)

  2. Qiu, D.: Longan production and research in China. In: IV International Symposium on Lychee, Longan and Other Sapindaceae Fruits 2012, pp. 39–46

  3. Subhadrabandhu, S., Yapwattanaphun, C.: Lychee and longan production in Thailand. In: International Symposium on Litchi and Longan 2001, pp. 49–57. Acta Horticulturae

  4. Choo, W.K.: Longan production in Asia. Food and agriculture organization of the United Nations, regional office for Asia and the Pacific, RAP PUBLICATION: 2000/2020 (2000)

  5. Sruamsiri, S., Silman, P.: Chemical composition and in vitro digestibility of by-products from longan production. J. Agric. Res. Ext. 32(2), 50–58 (2015)

    Google Scholar 

  6. He, N., Wang, Z., Yang, C., Lu, Y., Sun, D., Wang, Y., Shao, W., Li, Q.: Isolation and identification of polyphenolic compounds in longan pericarp. Sep. Purif. Technol. 70(2), 219–224 (2009)

    Google Scholar 

  7. Jaitrong, S., Rattanapanone, N., Manthey, J.A.: Analysis of the phenolic compounds in longan (Dimocarpus longan Lour.) peel. In: Proceedings of the Florida State Horticultural Society 2006, pp. 371–375

  8. Rangkadilok, N., Worasuttayangkurn, L., Bennett, R.N., Satayavivad, J.: Identification and quantification of polyphenolic compounds in longan (Euphoria longana Lam.) fruit. J. Agric. Food. Chem. 53(5), 1387–1392 (2005)

    Google Scholar 

  9. Rerk-am, U.: Anti-oxidant activities and polyphenolic compounds of longan (Dimocarpus longan Lour) peel and seed extracts. Thai J. Pharm. Sci. (TJPS) 40, 120–122 (2016)

    Google Scholar 

  10. Huang, G.-J., Wang, B.-S., Lin, W.-C., Huang, S.-S., Lee, C.-Y., Yen, M.-T., Huang, M.-H.: Antioxidant and anti-inflammatory properties of longan (Dimocarpus longan Lour.) pericarp. Evid. Based Complementary Altern. Med. 1, 10 (2012). https://doi.org/10.1155/2012/709483

    Article  Google Scholar 

  11. Li, L., Xu, J., Mu, Y., Han, L., Liu, R., Cai, Y., Huang, X.: Chemical characterization and anti-hyperglycaemic effects of polyphenol enriched longan (Dimocarpus longan Lour.) pericarp extracts. J. Funct. Foods 13, 314–322 (2015)

    Google Scholar 

  12. Ripa, F.A., Dash, P.R., Nesa, M.L., Sheikh, Z.: Phytochemical and hypoglycemic screening of seeds and peel of Nephelium longan fruits. Int. J. Biochem. 197, 483–489 (2015)

    Google Scholar 

  13. Ripa, F.A., Haque, M., Bulbul, I.J., Begum, Y., Habib, A.: Screening of central nervous system (CNS) depressant and antinociceptive activities of methanolic extracts of the peel and seed of Nephelium longan fruits. Afr. J. Pharm. Pharmacol. 6(11), 848–854 (2012)

    Google Scholar 

  14. Alam Ripa, F., Habib, A.: Anti-inflammatory and anti-diarrheal effects of methanolic extracts of seeds and peel of Nephelium longan fruits in rats. Iran. J. Pharmacol. Ther. 12(2), 58 (2014)

    Google Scholar 

  15. Prasad, K.N., Hao, J., Shi, J., Liu, T., Li, J., Wei, X., Qiu, S., Xue, S., Jiang, Y.: Antioxidant and anticancer activities of high pressure-assisted extract of longan (Dimocarpus longan Lour.) fruit pericarp. Innov. Food Sci. Emerg. Technol. 10(4), 413–419 (2009)

    Google Scholar 

  16. Rangkadilok, N., Sitthimonchai, S., Worasuttayangkurn, L., Mahidol, C., Ruchirawat, M., Satayavivad, J.: Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol. 45(2), 328–336 (2007)

    Google Scholar 

  17. Ahmad, N., Zuo, Y., Lu, X., Anwar, F., Hameed, S.: Characterization of free and conjugated phenolic compounds in fruits of selected wild plants. Food Chem. 190, 80–89 (2016)

    Google Scholar 

  18. Chandrasekara, A., Shahidi, F.: Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 3(3), 144–158 (2011)

    Google Scholar 

  19. Barberousse, H., Roiseux, O., Robert, C., Paquot, M., Deroanne, C., Blecker, C.: Analytical methodologies for quantification of ferulic acid and its oligomers. J. Sci. Food Agric. 88(9), 1494–1511 (2008)

    Google Scholar 

  20. White, B.L., Howard, L.R., Prior, R.L.: Release of bound procyanidins from cranberry pomace by alkaline hydrolysis. J. Agric. Food. Chem. 58(13), 7572–7579 (2010)

    Google Scholar 

  21. Apolinar-Valiente, R., Romero-Cascales, I., Gómez-Plaza, E., Ros-García, J.M.: Degradation of Monastrell grape skins: effect of individual enzymatic activities and their synergic combination. Eur. Food Res. Technol. 243(11), 1933–1942 (2017)

    Google Scholar 

  22. Xu, C., Yagiz, Y., Borejsza-Wysocki, W., Lu, J., Gu, L., Ramírez-Rodrigues, M.M., Marshall, M.R.: Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds. Food Chem. 157, 20–29 (2014)

    Google Scholar 

  23. Xu, L., He, W., Lu, M., Yuan, B., Zeng, M., Tao, G., Qin, F., Chen, J., Guan, Y., He, Z.: Enzyme-assisted ultrasonic-microwave synergistic extraction and UPLC-QTOF-MS analysis of flavonoids from Chinese water chestnut peels. Ind. Crops Prod. 117, 179–186 (2018)

    Google Scholar 

  24. Zhang, G., Hu, M., He, L., Fu, P., Wang, L., Zhou, J.: Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food Bioprod. Process. 91(2), 158–168 (2013)

    Google Scholar 

  25. Jiang, G., Jiang, Y., Yang, B., Yu, C., Tsao, R., Zhang, H., Chen, F.: Structural characteristics and antioxidant activities of oligosaccharides from longan fruit pericarp. J. Agric. Food Chem. 57(19), 9293–9298 (2009)

    Google Scholar 

  26. Wanlapa, S., Wachirasiri, K., Sithisam-ang, D., Suwannatup, T.: Potential of selected tropical fruit peels as dietary fiber in functional foods. Int. J. Food Prop. 18(6), 1306–1316 (2015)

    Google Scholar 

  27. del Pilar Sánchez-Camargo, A., Montero, L., Stiger-Pouvreau, V., Tanniou, A., Cifuentes, A., Herrero, M., Ibáñez, E.: Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem. 192, 67–74 (2016)

    Google Scholar 

  28. Hong, Y.-H., Jung, E.Y., Park, Y., Shin, K.-S., Kim, T.Y., Yu, K.-W., Chang, U.J., Suh, H.J.: Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts. Biosci. Biotechnol. Biochem. 77(1), 22–29 (2013)

    Google Scholar 

  29. Zhou, Z., Shao, H., Han, X., Wang, K., Gong, C., Yang, X.: The extraction efficiency enhancement of polyphenols from Ulmus pumila L. barks by trienzyme-assisted extraction. Ind. Crops Prod. 97, 401–408 (2017)

    Google Scholar 

  30. Lin, S., Wang, Z., Hu, J., Ge, S., Zheng, B., Zeng, S.: Polyphenolics from fresh lotus seeds: enzyme-assisted ethanol extraction optimization and its antioxidant activity. Curr. Top. Nutraceutical. Res. 16(1), 85–96 (2018)

    Google Scholar 

  31. Chen, P.X., Bozzo, G.G., Freixas-Coutin, J.A., Marcone, M.F., Pauls, P.K., Tang, Y., Zhang, B., Liu, R., Tsao, R.: Free and conjugated phenolic compounds and their antioxidant activities in regular and non-darkening cranberry bean (Phaseolus vulgaris L.) seed coats. J. Funct. Foods 18, 1047–1056 (2015)

    Google Scholar 

  32. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144–158 (1965)

    Google Scholar 

  33. Brand-Williams, W., Cuvelier, M.-E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28(1), 25–30 (1995)

    Google Scholar 

  34. Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J.A., Prior, R.L.: High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50(16), 4437–4444 (2002)

    Google Scholar 

  35. Jayaprakasha, G., Singh, R., Sakariah, K.: Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73(3), 285–290 (2001)

    Google Scholar 

  36. Carter, P.: Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal. Biochem. 40(2), 450–458 (1971)

    Google Scholar 

  37. Chandrasekara, A., Shahidi, F.: Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. J. Agric. Food Chem. 58(11), 6706–6714 (2010)

    Google Scholar 

  38. Patthawaro, S., Lomthaisong, K., Saejung, C.: Bioconversion of agro-industrial waste to value-added product lycopene by photosynthetic bacterium Rhodopseudomonas faecalis and its carotenoid composition. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-018-00571-z

    Article  Google Scholar 

  39. Llano, T., Alexandri, M., Koutinas, A., Gardeli, C., Papapostolou, H., Coz, A., Quijorna, N., Andres, A., Komaitis, M.: Liquid–liquid extraction of phenolic compounds from spent sulphite liquor. Waste Biomass Valorization 6(6), 1149–1159 (2015)

    Google Scholar 

  40. Wang, J., Zhao, L.-J., Zhang, Y.-Q.: UV irradiation and salicylic acid immersion enhance the level of Mulberroside a in isolated mulberry branches—a huge amount of agro-waste. Waste Biomass Valorization 8(8), 2643–2651 (2017)

    Google Scholar 

  41. Puls, J.: Chemistry and biochemistry of hemicelluloses: Relationship between hemicellulose structure and enzymes required for hydrolysis. In: Macromolecular Symposia 1997, vol. 1, pp. 183–196. Wiley Online Library

  42. Singhania, R.R., Patel, A.K., Sukumaran, R.K., Larroche, C., Pandey, A.: Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Biores. Technol. 127, 500–507 (2013)

    Google Scholar 

  43. Prasad, K., Yang, B., Zhao, M., Sun, J., Wei, X., Jiang, Y.: Effects of high pressure or ultrasonic treatment on extraction yield and antioxidant activity of pericarp tissues of longan fruit. J. Food Biochem. 34(4), 838–855 (2010)

    Google Scholar 

  44. Prasad, K.N., Yang, B., Shi, J., Yu, C., Zhao, M., Xue, S., Jiang, Y.: Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction. J. Pharm. Biomed. Anal. 51(2), 471–477 (2010)

    Google Scholar 

  45. Pan, Y., Wang, K., Huang, S., Wang, H., Mu, X., He, C., Ji, X., Zhang, J., Huang, F.: Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chem. 106(3), 1264–1270 (2008)

    Google Scholar 

  46. Wang, L., Wu, Y., Liu, Y., Wu, Z.: Complex enzyme-assisted extraction releases antioxidative phenolic compositions from guava leaves. Molecules 22(10), 1648–1662 (2017)

    Google Scholar 

  47. Mushtaq, M., Sultana, B., Anwar, F., Adnan, A., Rizvi, S.S.: Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. J. Supercrit. Fluids 104, 122–131 (2015)

    Google Scholar 

  48. Mushtaq, M., Sultana, B., Akram, S., Anwar, F., Adnan, A., Rizvi, S.S.H.: Enzyme-assisted supercritical fluid extraction: an alternative and green technology for non-extractable polyphenols. Anal. Bioanal. Chem. 409(14), 3645–3655 (2017). https://doi.org/10.1007/s00216-017-0309-7

    Article  Google Scholar 

  49. Shahidi, F., Varatharajan, V., Oh, W.Y., Peng, H.: Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 5, 57–119 (2019)

    Google Scholar 

  50. de Camargo, A.C., Regitano-d’Arce, M.A.B., Biasoto, A.C.T., Shahidi, F.: Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. Food Chem. 212, 395–402 (2016)

    Google Scholar 

  51. Norsker, M., Bloch, L., Adler-Nissen, J.: Enzymatic degradation of plant cell wall polysaccharides: the kinetic effect of competitive adsorption. Food/Nahrung 43(5), 307–310 (1999)

    Google Scholar 

  52. Kaya, F., Heitmann, J.A., Joyce, T.W.: Influence of lignin and its degradation products on enzymatic hydrolysis of xylan. J. Biotechnol. 80(3), 241–247 (2000)

    Google Scholar 

  53. Jodayree, S., Smith, J.C., Tsopmo, A.: Use of carbohydrase to enhance protein extraction efficiency and antioxidative properties of oat bran protein hydrolysates. Food Res. Int. 46(1), 69–75 (2012)

    Google Scholar 

  54. Bouchard, A., Hofland, G.W., Witkamp, G.-J.: Properties of sugar, polyol, and polysaccharide water–ethanol solutions. J. Chem. Eng. Data 52(5), 1838–1842 (2007)

    Google Scholar 

  55. Xu, M.-S., Chen, S., Wang, W.-Q., Liu, S.-Q.: Employing bifunctional enzymes for enhanced extraction of bioactives from plants: flavonoids as an example. J. Agric. Food Chem. 61(33), 7941–7948 (2013)

    Google Scholar 

  56. Liu, L., Wen, W., Zhang, R., Wei, Z., Deng, Y., Xiao, J., Zhang, M.: Complex enzyme hydrolysis releases antioxidative phenolics from rice bran. Food Chem. 214, 1–8 (2017)

    Google Scholar 

  57. Van Le, H.: Comparison of enzyme-assisted and ultrasound-assisted extraction of vitamin C and phenolic compounds from acerola (Malpighia emarginata DC.) fruit. Int. J. Food Sci. Technol. 47(6), 1206–1214 (2012)

    Google Scholar 

  58. Gómez-García, R., Martínez-Ávila, G.C., Aguilar, C.N.: Enzyme-assisted extraction of antioxidative phenolics from grape (Vitis vinifera L.) residues. 3 Biotech 2(4), 297–300 (2012)

    Google Scholar 

  59. Karadag, A., Ozcelik, B., Saner, S.: Review of methods to determine antioxidant capacities. Food Anal. Methods 2(1), 41–60 (2009). https://doi.org/10.1007/s12161-008-9067-7

    Article  Google Scholar 

  60. Prior, R.L., Wu, X., Schaich, K.M.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53(10), 4290–4302 (2005)

    Google Scholar 

  61. Laguerre, M., Bayrasy, C., Panya, A., Weiss, J., McClements, D.J., Lecomte, J., Decker, E.A., Villeneuve, P.: What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Crit. Rev. Food Sci. Nutr. 55(2), 183–201 (2015)

    Google Scholar 

  62. Shahidi, F., Zhong, Y.: Revisiting the polar paradox theory: a critical overview. J. Agric. Food Chem. 59(8), 3499–3504 (2011)

    Google Scholar 

  63. Wang, T., Jonsdottir, R., Ólafsdóttir, G.: Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 116(1), 240–248 (2009)

    Google Scholar 

  64. Sun, L., Zhang, H., Zhuang, Y.: Preparation of free, soluble conjugate, and insoluble-bound phenolic compounds from peels of rambutan (Nephelium lappaceum) and evaluation of antioxidant activities in vitro. J. Food Sci. 77(2), C198–C204 (2012)

    Google Scholar 

  65. Fujita, A., Alencar, S., Park, Y.: Conversion of isoflavone glucosides to aglycones by partially purified β-glucosidases from microbial and vegetable sources. Appl. Biochem. Biotechnol. 176(6), 1659–1672 (2015)

    Google Scholar 

  66. Newsome, A.G., Li, Y., Van Breemen, R.B.: Improved quantification of free and ester-bound gallic acid in foods and beverages by UHPLC-MS/MS. J. Agric. Food Chem. 64(6), 1326–1334 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by “The National Natural Science Foundation of China (Grant No. 31871759)”and “Project of Distinguished Professor of Liaoning Province (2015-153)”. Some of the standard chemicals were kindly provided by Dr. Nuansri Rakariyatham from Nation University, Lampang, Thailand.

Funding

This work was funded by The National Natural Science Foundation of China (Grant No. 31871759) and Project of Distinguished Professor of Liaoning Province (2015-153).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dayong Zhou or Beiwei Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12649_2019_723_MOESM1_ESM.docx

Supplementary material 1 (DOCX 156 kb) Online resource 1 High performance liquid chromatography (HPLC) chromatograms at 270 nm of standard phenolics (A), and representative crude extracts of longan peel with and without enzymatic pretreatments (B): cellulase-assisted extraction (CE); α-amylase-assisted extraction (AE); protease-assisted extraction (PE); β-glucosidase-assisted extraction (GE). Peaks: 1, Gallic acid; 2, Chlorogenic acid; 3, Corilagin; 4, Ferulic acid; 5, Ellagic acid; 6, o-Coumaric acid; 7, Quercetin; 8, Kaempferol. Noted that ferulic acid and chlorogenic acid were quantified at 330 nm (chromatogram not shown)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakariyatham, K., Liu, X., Liu, Z. et al. Improvement of Phenolic Contents and Antioxidant Activities of Longan (Dimocarpus longan) Peel Extracts by Enzymatic Treatment. Waste Biomass Valor 11, 3987–4002 (2020). https://doi.org/10.1007/s12649-019-00723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00723-9

Keywords

Navigation