Skip to main content

Advertisement

Log in

Valorization of Waste Biomass in Fermentative Production of Cellulases: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The most promising way to achieve the smooth, flexible and sustainable bioeconomy is the utilization of renewable lignocellulosic biomass as a feedstock for the production of fuels, chemicals, enzymes and high-valued products. Cellulolytic enzymes are indispensable for the maintenance of global carbon cycle, since they catalyze the degradation of cellulose. Therefore for solving the forthcoming waste management and energy issues of mankind, cellulase production technology plays significant and vital role. Cellulases are industrial enzymes and have extensive application in various process industries. Its relatively high cost of production has hindered the wider industrial application. Significant cost reduction is required to enhance the commercial viability of cellulase production technology. Utilization of novel and cheap lignocellulosic renewable resources as substrate for enzyme fermentation process is a promising way of efficient and low cost cellulases production. The present paper reveals, a review on cellulase production through various microorganisms employing economical, abundantly available renewable lignocellulosic biomass as carbon source. It also deals with the recent approaches used at microbial as well as feedstock level, making more efficient, flexible and cost effective fermentation process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, J., He, Y., Yu, X., Banks, S.W., Yang, Y., Zhang, X., Yu, Y., Liu, R., Bridgewater, A.V.: Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sustain. Energy Rev. 76, 309–322 (2017)

    Google Scholar 

  2. Kachlishvili, E., Penninckx, M.J., Tsiklauri, N., Elisashvili, V.: Effect of nitrogen source on lignocellulolytic enzyme production by white–rot basidiomycetes under solid state cultivation. World J, Microbiol Biotechnol (2005)

    Google Scholar 

  3. de Almeida, M.N., Falkoski, D.L., Guimarães, V.M., de Rezende, S.T.: Study of gamba grass as carbon source for cellulase production by Fusarium verticillioides and its application on sugarcane bagasse saccharification. Ind. Crops Prod. 133, 33–43 (2019)

    Google Scholar 

  4. Oberoi H.S, Chavan Y, Bansal S and Dhillon G.S.: Production of cellulases through solid state fermentation using kinnow pulp as major substrate. Food Bioprocess Technol (2008)

  5. Pandey, A., Soccol, C.R, Nigam P., Soccol, V.T.: Biotechnological potential of agroindustrial residues. I: Sugarcane Bagasse. Bioresour Technol 74: 69-80 (2000)

  6. Qi, B., Vu, A., Wickramasinghe, S.R., Qian, X.: Glucose production from lignocellulosic biomass using a membrane-based polymeric solid acid catalyst. Biomass Bioenergy 117, 137–145 (2018)

    Google Scholar 

  7. Lo, C.M., Zhang, Q., Lee, P., Ju, L.K.: Cellulase production by Trichoderma reesei using sawdust hydrolysate. Appl. Biochem. Biotechnol. 121–124, 561–574 (2005)

    Google Scholar 

  8. Chemical and biochemical degradation of waste cellulosic materials: Masry AMEI, Ghaly MF, Khalafallah MA, Fayed YAEI. J. Sci. Ind. Res. 61, 719–725 (2002)

    Google Scholar 

  9. Henrissat, B.: A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309–316 (1991)

    Google Scholar 

  10. Lynd, L.R., Weimer, P.J., Vanzyl, W.H., Pretorious, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002)

    Google Scholar 

  11. Jecu, L.: Solid state fermentation of agricultural wastes for endoglucanase production. Ind. Crops Prod. 11, 1–5 (2000)

    Google Scholar 

  12. Bhatt, M.K.: Cellulases and releted enzyme in biotechnology. Biotechnol. Adv. 18, 355–383 (2000)

    Google Scholar 

  13. Domingues, F.C., Queinoz, J.A., Cabral, J.M.S., Fonseca, L.P.: The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei RUT C 30”. Enzyme Microbial Technol 26 (2004)

  14. Lynd, L.R., Weimer, P.J., Vanzyl, W.H., Pretorious, I.S.: Microbial cellulose utilization: fundamentals and Biotechnology. Microbiol Mol Biology Rev 66, 506–577 (2000)

    Google Scholar 

  15. Tolan, J.S., Foody, B.: Cellulase from submerged fermentation. Adv. Biochem. Eng. Biotechnol. 65, 42–67 (1999)

    Google Scholar 

  16. Bajpai, P., Bajpai, P.K.: Deinking with enzymes: a review. Tappi J. 81(12), 111–116 (1998)

    Google Scholar 

  17. Welt T, Dinus RJ.: Enzymatic deinking: a review. Prog Paper Recycl. 36-45 (1995)

  18. Prasad, D.Y., Heitmann, J.A., Joyce, T.W.: Enzyme deinking of black & white letterpress printed newsprint waste. Prog Paper Recycle 1, 21–30 (1992)

    Google Scholar 

  19. Cortez, J.M., Ellis, J., Bishop, D.P.: Cellulase finishing of woven cotton fabrics in jet and winch machines. J. Biotechnol. 89, 239–245 (2001)

    Google Scholar 

  20. Belghith, H., Ellouz, C., Gorgouri, A.: Biostoning of denims by Penicillium occitanis cellulase. J. Biotechnol. 89, 257–262 (2001)

    Google Scholar 

  21. Galente, Y.M., Formqntici, C.: Enzyme applications in detergency and in manufacturing industries. Curr. Org. Chem. 7, 1399–1422 (2003)

    Google Scholar 

  22. Graham, H., Balnave, D.: Dietary enzymes for increasing energy availability. In: Wallace, R.J., Chesson, A. (eds.) Biotechnology in Animal feeds and Animal Feeding, pp. 296–309. Springer, Weinhein (1995)

    Google Scholar 

  23. Beauchemin KA, Rode LM, Sevelt VJH.: Fibrolytic enzymes increase fiber digestibility and growth rates of steers fed dry forage. Can J Anim Sci. 75:641-644 (1995)

  24. Galante YM, De Conti A, Monteverdi R.: Application of Trichodermma enzymes in food and feed industries. In: Harman, Kubicek (eds) Enzymes, Biological Control & Commercial Application, Vol. 2. Taylor & Francis, London, pp.  327-342(1998)

  25. Deshpande, V.S., Keskar, C., Mishra, M., Rao, M.: Direct conversion of cellulos/hemicellulose to ethanol by Neurospora crassa. Enzyme Microb. Technol. 8, 149–152 (1986)

    Google Scholar 

  26. Marđetko, N., Novak, M., Trontel,A.,Grubisic,M.,Galic,M.,Santek, B.:Bioethanol Production from Dilute-acid Pre-treated Wheat Straw Liquor Hydrolysate by Genetically Engineered Saccharomyces cerevisiae., Chem. Biochem. Eng. Q., 32(4): 483–499 (2018)

  27. Zaldivar, J., Nielson, J., Olsson, L.: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56, 17–34 (2001)

    Google Scholar 

  28. Gnansounov, E., Daurial, A.: Ethanol fuel from biomass: a review. J. Sci. Ind. Res. 64, 805–821 (2005)

    Google Scholar 

  29. Senthil, K.V., Gunas, E.P.: Bioethanol production from cellulosic substrates: engineered bacteria and process integration challenges. J. Sci. Ind. Res. 64, 845–853 (2005)

    Google Scholar 

  30. Moniruzzaman, M., Ingram, L.O.: Ethanol production from dilute acid hydrolysate of rice hulls using genetically engineered Escherichia coli. Biotechnol. Lett. 20(10), 943–947 (1998)

    Google Scholar 

  31. Wang, F., Jiang, Y., Guo, W., Niu, K., Zhang, R., Hou, S., Wang, M., Yi, Y., Zhu, C., Jia, C., Fang, X.: An environmentally friendly and productive process for bioethanol production from potato waste. Biotechnol. Biofuels 9, 50 (2016)

    Google Scholar 

  32. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)

    Google Scholar 

  33. Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R.: Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800 (2010)

    Google Scholar 

  34. Pejo, E.T., Oliva, J.M., Ballesteros, M.: Realistic approach for full scale bioethanol production from lignocellulose: a review. JSIR 67, 874–884 (2008)

    Google Scholar 

  35. Piccolo, C., Fabrizio, B.: A techno economic comparison between two technologies for bioethanol production from lignocelluloses. Biomass Bioenergy 33, 478–491 (2009)

    Google Scholar 

  36. Talebnia, F., Karakashev, D., Angelidaki, I.: Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101, 4744–4753 (2010)

    Google Scholar 

  37. Cen, P., Xia, L.: Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem. 34, 909–912 (1999)

    Google Scholar 

  38. Mechanism of cellulases and xylanases: Birsan C., Johnson, P., Joshi, M, Macleod, A., McIntosh, L., Monem, V., Nitz, M., Rose, D.R., Tull, D., Wakarchuck, W.W., Wang, Q., Warren, R.A., J., White, A., Withers, S.G. Biochem. Soc. Trans. 26, 156–160 (1998)

    Google Scholar 

  39. Kumakura, M., Kojima, T., Koetsu, I.: Pretreatment of lignocellulosic wastes by combination of irradiation and mechanical crushing. Biomass 2, 299–300 (1982)

    Google Scholar 

  40. Mathew, G.M., Sukumaran, R.K., Singhania, R.R., Pandey, A.: Progress in research on fungal cellulases for lignocellulosic degradation. JSIR 67, 898–907 (2008)

    Google Scholar 

  41. Maurya, D.P., Singla, A., Negi, S.: An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5), 597–609 (2015)

    Google Scholar 

  42. Rivers, D.B.: Factors affecting the enzymatic hydrolysis of bagasse and rice straw. Biol Wastes 26, 85–95 (1998)

    Google Scholar 

  43. Suto, M., Tomita, F.: Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng. 92, 305–311 (2001)

    Google Scholar 

  44. Sukumaran, R.K., Singhania, R.R., Pandey, A.: Microbial cellulases production, applications & a challenges. JSIR 64, 832–844 (2005)

    Google Scholar 

  45. Abulnaja KO, Zaid AAZA.: Utilization of palm tree compound leaves in formation of cellulases. Bioresource Technol 44: 255-25 (1993)

  46. Alam, M.Z., Muyibi, S.A., Wahid, R.: Stastical optimization of process conditions for cellulase production by liquid state bioconversion of domestic waste water sludge. Bioresour. Technol. 99, 4709–4716 (2008)

    Google Scholar 

  47. Baig MMV.: Cellulolytic enzymes of Trichoderma lignorum produced in banana agro waste: optimization of culture medium conditions. JSIR 64: 57-60 (2005)

  48. Ju, L.K., Afolabi, O.A.: Waste paper hydrolysate as soluble inducing substrate for cellulase production in continous culture of Trichoderma reesei. Biotechnol. Prog. 5, 91–97 (1999)

    Google Scholar 

  49. Madamwar, D., Patel, S.: Formation of cellulases by co-culturing of Trichoderma reesei and Aspergillus niger on cellulosic waste. World J. Microbiol. Biotechnol. 8, 183–186 (1992)

    Google Scholar 

  50. Mahesweri, D.K., Jahan, H., Paul, J., Varma, A.: Wheat Straw a potential substrate for cellulase production using Trichodema reesei. World J. Microbiol. Biotechnol. 9, 120–121 (1993)

    Google Scholar 

  51. Muniswaran PKA, Charyulu CLN.: Solid Substrate fermentation of coconut coir pith for cellulase production. Enzyme Microbial Technol 16: 436-440 (1994)

  52. Prasertsan, P., Kittikul, A.H., Chitmanee, B.: Isolation and selection of cellulolytic fungi from palm oil mill effluent. World J. Microbiol. Biotechnol. 8, 614–617 (1992)

    Google Scholar 

  53. Szengyle, Z., Zacchi, G., Reczey, K.: Cellulase production based on hemicellulose hydrolysate from steam pretreated willow. Appl. Biochem. Biotechnol. 63–65, 351–363 (1997)

    Google Scholar 

  54. Reczey K, Szengyel Z, Eklund R, and Zacchi G.: Cellulase production by T. reesei. Bioresour Technol 57: 25-30 (1996)

  55. Dey, P., Singh, J., Scaria, J., Anand, A.P., Dey, P.: Improved production of cellulase by Trichoderma reesei (MTCC 164) from coconut mesocarp-based lignocellulosic wastes under response surface-optimized condition. 3 Biotech 8, 402 (2018)

    Google Scholar 

  56. Silva, S., Elmore, B.B., Huckabay, H.K.: Cellulase activity of Trichoderma reesei (RUT-C30) on municipal solid waste. Appl. Biochem. Biotechnol. 51(1), 145–153 (1995)

    Google Scholar 

  57. Kalsoom, R., Ahmed, S., Nadeem, M., Chohan, S., Abid, M., Kalsoom, R.: Biosynthesis and extraction of cellulase produced by Trichoderma on agro-wastes. Int. J. Environ. Sci. Technol. 16(2), 921–928 (2019)

    Google Scholar 

  58. Sirohi, R., Singh, A., Tarafdar, A.S., Sahi NC., Verma AK., Kushwaha A., Sirohi R.: Cellulase production from pre-treated pea hulls using Trichoderma reesei under submerged fermentation. Waste Biomass Valorization, pp. 1–9 (2018)

  59. Maibam, P.D., Maiti, S.K.: A strategy for simultaneous xylose utilization and enhancement of cellulase enzyme production by Trichoderma reesei cultivated on liquid hydrolysate followed by induction with feeding of solid sugarcane bagasse. Waste Biomass Valorization,, pp. 1–10 (2019)

  60. Razak, M.N.A., Ibrahim, M.F., Yee, P.L., Hassan, M.A., Abd-Aziz, S.: Utilization of oil palm decanter cake for cellulase and polyoses production. Biotechnol. Bioprocess Eng. 17(3), 547–555 (2012)

    Google Scholar 

  61. Ariff, I.N.M., Bahrin, E.K., Ramli, N., Abd-Aziz, S.: Direct use of spent mushroom substrate from Pleurotus pulmonarius as a readily delignified feedstock for cellulase production. Waste Biomass Valorization 10(4), 839–850 (2019)

    Google Scholar 

  62. Zhao H.C., Liu X., Zhan T., He J.: Production of cellulase by Trichoderma reesei from pretreated straw and furfural residues., RSC Adv. 8: 36233-36238 (2018)

  63. Pandey, S., Shrivastava, M., Shahid, M., Kumar, V., Singh, A.: Trichoderma species cellulases produced by solid state fermentation. J Data Min Genomics Proteom. 6, 170 (2015)

    Google Scholar 

  64. Prasertsan, P., Oi, S.: Production of cellulolytic enzymes from fungi and use in the saccharification of palm cake and palm fiber. World J. Microbiol. Biotechnol. 8, 536–538 (1992)

    Google Scholar 

  65. Kang, S.W., Pork, Y.S., Lee, J.S., Hong, S.E., Kim, S.W.: Production of cellulases and hemicellulases by lingocellulosic biomass. Bioresour. Technol. 91, 153–156 (2004)

    Google Scholar 

  66. Kirchner, O.G., Granados, M.S., Pascual, P.R.: Effect of media composition and growth conditions on production of & #x03B2;-Glucosidase by Aspergillus niger C-6. Appl. Biochem. Biotechnol. 121–124, 347–360 (2005)

    Google Scholar 

  67. Hu, Y., Du C., Pensupa N., Lin CNK.: Optimisation of fungal cellulase production from textile waste using experimental design. Proc Saf Environ Prot 118: 133-142 (2018)

  68. Leite, P., Silva, C., Salgado, J.M., Belo, I.: Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Ind. Crops Prod. 137, 315–322 (2019)

    Google Scholar 

  69. Julia, B.M., MaríaBelén, A., Georgina, B., Beatriz, F.: Potential use of soybean hulls and waste paper as supports in SSF for cellulase production by Aspergillus niger. Biocatal. Agric. Biotechnol. 6, 1–8 (2016)

    Google Scholar 

  70. Bansal, N., Tewari, R., Soni, R., Soni, S.K.: Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag. 32(7), 1341–1346 (2012)

    Google Scholar 

  71. Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., Brar, S.K.: Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crops Prod. 34(1), 1160–1167 (2011)

    Google Scholar 

  72. Ang SK., Shaza E.M., Adibah Y., Suraini A.A., Madihah M.S: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48(9): 1293-1302 (2003)

  73. Prajapati BP., Suryawanshi RK., Agrawal S., GhoshM., Kango N.: Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues., Bioresource Technology. 250, 733-740 (2018)

  74. Dhillon, G.S., Kaur, S., Brar, S.K., Verma, M.: Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state. Ind. Crops Prod. 38(6), 13 (2012)

    Google Scholar 

  75. Acharya, B.K., Mohana, S., Jog, R., Divecha, J., Madamwar, D.: Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation. J Environ Manag 91(10), 2019–2027 (2010)

    Google Scholar 

  76. Arpan, D., TanmayPaulSuman K.HalderArijitJanaChiranjitMaityPradeep K.Das MohapatraBikas R.PatiKeshab C.Mondal.: Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Bioresour Technol 128, 290-296 (2013)

  77. Sharma, R., Rawat, R., Bhogal, R.S., Oberoi, H.S.: Multi-component thermostable cellulolytic enzyme production by Aspergillus niger HN-1 using pea pod waste: appraisal of hydrolytic potential with lignocellulosic biomass. Process Biochem. 50(5), 696–704 (2015)

    Google Scholar 

  78. Janveja, C., Rana, S.S., Soni, S.K.: Optimization of valorization of biodegradable kitchen waste biomass for production of fungal cellulase system by statistical modeling. Waste Biomass Valorization 5(5), 807–821 (2014)

  79. Krishna, C.: Production of bacterial cellulases by solid state bio processing of banana wastes”. Bioresour. Technol. 69, 231–239 (1999)

    Google Scholar 

  80. Vijayaraghavan P., Vincent SGP., Dhillon GS.: Solid-substrate bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18. Waste Manag 48:513-520 (2016)

  81. Kazeem, M.O., Shah, U.K.M., Baharuddin, A.S., AbdulRahman, N.A.: Prospecting agro-waste cocktail: supplementation for cellulase production by a newly isolated thermophilic B. licheniformis 2D55. Appl Biochem Biotechnol 182: 1318 (2017)

  82. Srivastava N, Srivastava M, Manikanta A, Singh P, Ramteke PW, Mishra PK, Malhotra BD.:. Production and optimization of physicochemical parameters of cellulase using untreated orange waste by newly isolated Emericella variecolor NS3. 183(2): 601–612 (2017)

  83. AlAzkawi, A.S., Sivakumar, N., AlBahry, S.: Bioprocessing of cardboard waste for cellulase production. Biomass Convers. Bioref. 8, 597–606 (2018)

    Google Scholar 

  84. Annamalai, N., Rajeswari, M.V., Elayaraja, S., Thavasi, R., Vijayalakshmi, S., Balasubramanian, T.: Purification and characterization of thermostable alkaline cellulase from marine bacterium Bacillus licheniformis AU01 by utilizing cellulosic wastes. Waste Biomass Valorization. 3(3), 305–310 (2012)

    Google Scholar 

  85. Fujian, X., Hozhang, C., Zuahu, L.: Effect of periodically dynamic changes of air on cellulase Production in solid state fermentation. Enzyme Microb. Technol. 30, 45–48 (2002)

    Google Scholar 

  86. Kuhad, R.C., Singh, A.: Enhanced production of cellulase by Penicillium citrinum in solid state fermentation of cellulosic residue. World J. Microbiol. Biotechnol. 9, 100–101 (1999)

    Google Scholar 

  87. Romero, D., Aguado, J., Gonzaez, L., Ladero, M.: Cellulase production by Neurospora crassa on wheat straw. Enzyme Microb. Technol. 25, 244–250 (1999)

    Google Scholar 

  88. Verma, N., Kumar, V., Bansal, M.C.: Utilisation of egg shell waste in cellulase production by Neurospora crassa under wheat bran based solid state cultivation. Polish J Environ Stud 21(2), 491–497 (2012)

    Google Scholar 

  89. Panagiotou, G., Kekos, D., Macris, B.J., Christakopoulas, P.: Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind. Crops Prod. 18, 37–45 (2000)

    Google Scholar 

  90. Jurg, H., Chag, K.S.: Thermostable cellulase from Streptomyces Sp: scale up production in a 50 L fermenter. Biotech. Lett. 27, 239–242 (2005)

    Google Scholar 

  91. Keke BC and Pateron A.: Simaltaneous production and induction of cellulolytic and xylanolytic enzymes in Streptomyces sp. World J Microbiol Biotechnol 483–487 (1992)

  92. Saratale, G.D., Saratale, G.R., Ghodake, G.S., Jiang, Y.-Y., Chang, J.-S., Shin, H.S., Kumar, G.K.: Solid state fermentative lignocellulolytic enzymes production, characterization and its application in the saccharification of rice waste biomass for ethanol production: an integrated biotechnological approach. J Taiwan Inst Chem Eng 76, 51–58 (2017)

    Google Scholar 

  93. Sinjaroonsak, S., Chaiyaso, T. & H-Kittikun, A.: Optimization of cellulase and xylanase productions by Streptomyces thermocoprophilus TC13W using low cost pretreated oil palm empty fruit bunch and tuna condensate as substrate. Waste Biomass Valorization. https://doi.org/10.1007/s12649-019-00720-y. (2019)

  94. Chowdhary, N.A., Monruzzaman, M., Nahar, N., and Chowdhary, N.: Production of cellulase and saccharification of lignocellulosic by A. micromonospora sp. World J Microbiol Biotechnol 7:603-606 (1991)

  95. Tiwari, P., Misra, B.N., Sangwan, N.S.: β-glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. Biomed. Res. Int. 2013, 203735 (2013)

    Google Scholar 

  96. Chandra M, Kalra A, Sharma PK, Sangwan RS.: Cellulase production by six Trichoderma spp. fermented on medicinal plant processings. J Ind Microbiol Biotechnol 36(4): 605-609 (2009)

  97. Chandra, M., Kalra, A., Sharma, P.K., Kumar, H., Sangwan, R.S.: Optimization of cellulases production by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process. Biomass Bioenergy 34(5), 805–811 (2010)

    Google Scholar 

  98. Guerra G, Casado M.R.L.G., Arguelles J, Sanchez MAI, Manzano AM, Guzman T.: Cellulase production with sugarcane straw by Trichoderma citrinoviride on solid bed. Sugar Tech 8(1): 30-35 (2006)

  99. Ezeilo, U.R., Lee, C.T., Huyop, F., Zakaria, I.I., Wahab, R.A.: Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. J Environ Manag. 243, 206–217 (2019)

    Google Scholar 

  100. Ezeilo, U.R., Wahab, R.A., Tin, L.C., Zakaria, I.I., Huyop, F., Mahat, N.A.: Fungal-assisted valorization of raw oil palm leaves for production of cellulase and xylanase in solid state fermentation media. Waste Biomass Valorization. (2019). https://doi.org/10.1007/s12649-019-00653-6

    Article  Google Scholar 

  101. Vaithanomsat, P., Molnapat, S., Malapant, T., Kosugi, A., Thanapase, W., Mori, Y.: Production of β-glucosidase from a newly isolated Aspergillus species using response surface methodology. Int. J. Microbiol. 2011:Article ID 949252 (2011)

  102. Vyas, A., Vyas, D., Vyas, K.M.: Production and optimization of cellulase on pretreated ground nut shell by Aspergillus terrus AV 49. JSIR 64, 281–286 (2005)

    Google Scholar 

  103. Junior, A.B., Borges, D.G., Tardioli, P.W., Farinas, C.S.: Characterization of β-glucosidase produced by Aspergillus niger under solid-state fermentation and partially purified using MANAE-Agarose. Biotechnol Res Int. 2014, 317092 (2014)

    Google Scholar 

  104. Hanif, A., Yasmeen, A., Rajoka, M.I.: Induction, repression and derepression of exoglucanase synthesis in Aspergillus niger. Bioresour. Technol. 63, 1298–1306 (2004)

    Google Scholar 

  105. Kubiecek, C.P., Messener, R., Grauber, F., Mach, R.L., KubiekPranz, E.M.: The Trichodermma cellulase regulatory puzzle: from the interior of life of a secretory fungus. Enzyme Microb. Technol. 15, 90–99 (1993)

    Google Scholar 

  106. Nathan, V.K., Rani, M.E., Gunaseeli, R., Kannan, N.D.: Modeling and structural analysis of cellulases using Clostridium thermocellum as template. Bioinformation 8(22), 1105–1110 (2012)

    Google Scholar 

  107. Ali, S., Sayed, A.: Regulation of cellulase biosynthesis in Aspergillus terreus. World J. Microbiol. Technol. 8, 73–75 (1992)

    Google Scholar 

  108. Cortoras, M., Agosin, E.: Regulatory aspects of endoglucanase production by the brown rot fungus Gleophyllum trabenum. Exp Microbiol 16, 253–260 (1992)

    Google Scholar 

  109. Brückner, R., Titgemeyer, F.: Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209(2), 141–148 (2002)

    Google Scholar 

  110. Amanda ACC., de Paula RG, dos Santos Castro L, Silva-Rocha R, Gabriela Felix Persinoti GF., Silva RN., 119Trichoderma reesei CRE1-mediated carbon catabolite repression in re-sponse to sophorose through RNA sequencing analysis. Curr Genomics 17: 119-131 (2016)

  111. Aro, N., Pakula, T., Pentilla, M.: Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 25, 719–739 (2004)

    Google Scholar 

  112. Juhasz, T., Kozma, K., Szengyel, Z., Reczey, K.: Production of & #x03B2;-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technol Biotechnol 41, 49–53 (2003)

    Google Scholar 

  113. Raulo, R., Kokolski, M., Archer, D.B.: The roles of the zinc finger transcription factors XlnR, ClrA and ClrB in the breakdown of lignocellulose by Aspergillus niger. AMB Express 6, 5 (2016)

    Google Scholar 

  114. Withers, S.G.: Mechanisms of glucosyl transfereses and hydrolases. Carbohydr. Polym. 44, 25–337 (2001)

    Google Scholar 

  115. Teri, T.T., KoiVula, A., Linder, M., Wohlfahrt, G., Divne, C., Jones, T.A.: Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose. Biochem. Soc. Trans. 26, 173–178 (1998)

    Google Scholar 

  116. Tomme, P., Warren, R.A.J., Gilkes, N.R.: Cellulose hydrolysis by bacteria and fungi. Adv Micro Physiol 37, 1–81 (1995)

    Google Scholar 

  117. Rani et al.: Comparative biochemistry and kinetics of microbial cellulose. In: G. Gupta (ed.) New and Future Developments in Microbial Biotechnology and Bioengineering

  118. Szizurto N, Silika-Ahom, Tenkanen M, Alapuranen M, Vehmaunpera J, Reczey K, Vikari, L.: Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melano corpous albomyces. J Biotec. nol 136: 140-147 (2008)

  119. Djajadi, D.T., Pihlajaniemi, V., Rahikainen, J., Kruus, K., Meyer, A.S.: Cellulases adsorb reversibly on biomass lignin. Biotechnol. Bioeng. 115(12), 2869–2880 (2018)

    Google Scholar 

  120. Morikova, Y., Ohashi, T., Mantani, O., Okada, H.: Cellulase induction by lactose in Trichoderma reesei PC3-7. Appl Microbiol Technol 44, 106–111 (1995)

    Google Scholar 

  121. Dashtban, M., Buchkowski, R., Qin, W.: Effect of different carbon sources on cellulase production by Hypocrea jecorina (Trichoderma reesei) strains. Int J Biochem Mol Biol. 2(3), 274–286 (2011)

    Google Scholar 

  122. Allan, A.L., Roche, C.D.: Effects of strain and fermentation conditions on production of cellulases by T. reesei. Biotechnol Bioeng. 33, 650-656 (1989)

  123. Schaffner, O.W., Toledo, R.T.: Cellulase production by Trichoderma reesei when culture on xylose based media supplemented with sorbose. Biotechnol. Bioeng. 37, 12–16 (1991)

    Google Scholar 

  124. Kumar, R., Singh, R.P.: Semisolid state fermentation of Eicchornia crassipes bikomass as lignocellulosic biopolymer fro cellulose and β-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC 164. Appl. Biochem. Biotechnol. 96(1–3), 71–82 (2001)

    Google Scholar 

  125. Eitner, V., Lindorfer, J.: Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility. Renewable Energy 8(1), 193–202 (2016)

    Google Scholar 

  126. Romero, D., Aguado, J., Gonzaez, L., Ladero, M.: Cellulase production by Neurospora crassa on wheat straw. Enzyme Microbial Technol. 25, 244–250 (1999)

    Google Scholar 

  127. Saquib, A.A.N., Hassan, M., Khan, N.F., Baig, S.: Thermostability of crude endoglucanase form Aspergillus fumigatus grown under solid state fermentation and submerged fermentation. Process Biochem. 45, 641–646 (2010)

    Google Scholar 

  128. Brijwani, K., Oberoi, H.S., Vadlani, P.V.: Production of cellulolytic enzyme system in mixed culture solid state fermentation of soyabean hulls supplemented with wheat bran. Process Biochem. 45(1), 120–128 (2010)

    Google Scholar 

  129. Shivanand, P., Mugeraya, G. & Kumar, A.: Utilization of renewable agricultural residues for the production of extracellular halostable cellulase from newly isolated Halomonas sp. strain PS47. Ann Microbiol 63(4), 1257–1263 (2013)

  130. Gherbawy, Y.A.M.H.: Effect of gamma irradiation on the cell wall degrading enzymes by Aspergillus niger. Int. J. Food Microbiol. 40, 127–131 (1998)

    Google Scholar 

  131. Bohra, V., Tikariha, H., Dafale, N.A.: Genomically defined Paenibacillus polymyxa ND24 for efficient cellulase production utilizing sugarcane bagasse as a substrate. Appl. Biochem. Biotechnol. 187(1), 266–281 (2019)

    Google Scholar 

  132. Syuan, K.Y., Ai, L.O.G., Suan, TK.: Evaluation of cellulase and xylanase production from Trichoderma harzianum using acid-treated rice straw as solid substrate. Mater. Today Proc 5(10), Part 2, 22109–22117 (2018)

  133. Maryana, R., Wahono, S., Rosyida, V.: Effect of temperature and fermentation time of crude cellulase production by trichoderma Reesei on straw substrate. Energy Procedia 65, 368–371 (2015)

    Google Scholar 

  134. Liu, Y.-T., Luo, Z.-U., Long, C.-N., Wang, H.-D., Long, M.-N., Hu, Z.: Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran. New Biotechnol. 28(6), 733–737 (2011)

    Google Scholar 

  135. Álvarez, D., Sánchez, O.: Evaluation of orange peel and green soybean as a substrate for the production of α-galactosidase by a soil isolated Aspergillus oryzae in solid state fermentation. Chem. Eng. Trans. 14, 337–344 (2008)

    Google Scholar 

  136. Chansoliya, P.R., Anand, R., Sharma, S.: Analysis of bioethanol production from newspaper by Saccharomyces cerevisiae and Zymomonas mobilis. Int J Eng Dev Res. 4(3), 517 (2016)

    Google Scholar 

  137. Nair, A.S., Al-Battashi, H., Al-Akzawi, A., Annamalai, N., Gujarathi, A., Al-Bahry, S., Dhillon, G.S., Sivakumar, N.: Waste office paper: a potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. Waste Manag 79, 491–500 (2018)

    Google Scholar 

  138. Moreau, A., Montplaisir, D., Sparling, R., Barnabé, S.: Hydrogen, ethanol and cellulase production from pulp and paper primary sludge by fermentation with Clostridium thermocellum. Biomass Bioenergy 72, 256–262 (2015)

    Google Scholar 

  139. Park, E.Y., Naruse, K., Kato, T.: Improvement of cellulase production in cultures of Acremonium cellulolyticus using pretreated waste milk pack with cellulase targeting for biorefinery. Bioresour. Technol. 102(10), 6120–6127 (2011)

    Google Scholar 

  140. Kumar N., Sambavi R., Renganathan TRS.: A study on cellulase production from a mixture of lignocellulosic wastes. Process Biochem. 83: 148-158 (2019)

  141. Muniswaran PKA and Charyulu CLN.: Solid substrate fermentation of coconut coir pith for cellulase production. Enzyme Microbial Technol 16:436-440 (1994)

  142. Umikalsom, M., Ariff, A., Shamsuddin, Z., Tong, C.C., Hasan, M.A., Karim, M.I.A.: Production of cellulase by a wild strain of Chaetomium globosumusing delignified oil palm empty-fruit-bunch fibre as substrate. Microbiol Biotechnol 47(5), 590–595 (1997)

    Google Scholar 

  143. Sinjaroonsak, S., Chaiyaso, T. & H-Kittikun, A.: Optimization of cellulase and xylanase productions by Streptomyces thermocoprophilus strain TC13W using oil palm empty fruit bunch and tuna condensate as substrates. Appl Biochem Biotechnol. https://doi.org/10.1007/s12649-019-00720-y (2019)

  144. Amraini, S.Z., Ariyani, L.P., Hermansyah, H., Setyahadi S., Rahman SF., Park D-H., Gozan M.:Production and characterization of cellulase from E. coli EgRK2 recombinant based oil palm empty fruit bunch., Biotechnol Bioprocess Eng 22(3), 287–295 (2017)

  145. Lah, T.N.T., Norulaini, N.A.N., Shahadat, M., Nagao H., Hossain MD. S.,Omar AKM.: Utilization of industrial waste for the production of cellulase by the cultivation of Trichoderma via solid state fermentation. Environ. Process 3: 803 (2016)

  146. Abdeshahian, P., Samat, N., Hamid, A.A., Yusoff WMW.: Solid substrate fermentation for cellulase production using palm kernel cake as a renewable lignocellulosic source in packed bed bioreactor. Biotechnol Bioprocess Eng 16(2): 238–24 (2011)

  147. Herculano PN, Porto TS, Moreira KA, Pinto GA, Souza-Motta CM, Porto AL.: Cellulase production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid-state fermentation. Appl Biochem Biotechnol 165(3–4), 1057–1067 (2011)

  148. Xin, F., Geng, A.: Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl. Biochem. Biotechnol. 162(1), 295–306 (2010)

    Google Scholar 

  149. Verma, N., Bansal, M.C., Kumar, V.: Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. BioResources 6(2), 1505–1519 (2011)

    Google Scholar 

  150. Saratale, G.D., Kshirsagar, S.D., Sampange, V.T., Saratale, R.G., Oh, S., Govindwar, S.P., Oh, M.-K.: Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Appl. Biochem. Biotechnol. 174(8), 2801–2817 (2014)

    Google Scholar 

  151. Li, X.L., Dien, B.S., Cotta, M.A., WU, Y.V., and Saha, B.C.: Profile of enzyme production by Trichoderma reesi Grown on corn fiber fractions. Appl Biochem Biotechnol 121–124:321-334, (2005)

  152. Liming, X., Xueliang, S.: High yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresource Technol 91, 259–262 (2004)

    Google Scholar 

  153. Folasade M., Olajuyigbe.,Olusola A., Ogunyewo.:Enhanced production and physicochemical properties of thermostable crude cellulase from Sporothrix carnis grown on corn cob. Biocatal Agricul Biotechnol. 7, 110-117 (2016)

  154. Ben Taher, I., Bennour, H., Fickers, P., Hassouna, M., Taher, I.B.: Valorization of potato peels residues on cellulase production using a mixed culture of Aspergillus niger ATCC 16404 and Trichoderma reesei DSMZ. Waste Biomass Valorization 8(1), 183–192 (2017)

    Google Scholar 

  155. Salihu, A., Sallau, A.B., Adamu, A., Kudu, F.A., Tajo, M.M., Bala, T.F., Yashim, W.D.: Utilization of groundnut husk as a solid substrate for cellulase production by Aspergillus niger using response surface methodology. Waste Biomass Valorization 5(4), 585–593 (2014)

    Google Scholar 

  156. Deshavath, N.N., Sahoo, S.K., Panda, M.M., Mahanta, S., Goutham, D.S., Goud, V.V., Dasu, V.V., Jetty, A.: The cost-effective stirred tank reactor for cellulase production from alkaline-pretreated agriculture waste biomass. In: Ghosh, S. (ed.) Utilization and Management of Bioresources. Springer, Singapore (2018)

    Google Scholar 

  157. Buntić, A.V., Milić, M.D., Stajković-Srbinović, O.S.., Rasulić N.V., Delić D.I., Mihajlovski K.R., Buntić A.V.: Cellulase production by Sinorhizobium meliloti strain 224 using waste tobacco as substrate., Int. J. Environ. Sci. Technol. 16(10): 5881-5890. (2019)

  158. Al-Gheethi, A.A.S.: Recycling of sewage sludge as production medium for cellulase by a Bacillus megaterium strain. Int J Recycl Org Waste Agric 4(2), 105–119 (2015)

    Google Scholar 

  159. Wen, Z., Liao, W., Chen, S.: Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 96, 491–499 (2005)

    Google Scholar 

  160. Wen, Z., Liao, W., Chen, S.: Production of cellulase/β-glucosidase by the mixed fungi culture of Trichoderma reesei and Aspergillus phoenicis on dairy manure. Appl. Biochem. Biotechnol. 121–124, 93–104 (2005)

    Google Scholar 

  161. Wayman, M., Chen, S.: Cellulase production by Trichodermma reesei using whole wheat flour as a carbon source. Enzyme Microbial Technol 14, 825–831 (1992)

    Google Scholar 

  162. Vlaev, S. D., Djejeva, G., Raykovska, V., and Schugerl, K.: Cellulase production by Trichodermma sp. grown on corn fiber substrate. Process Biochem 32(7), 561-565 (1997)

  163. Szijarto, N., Faigl, Z., Reczey, K., Mezes, M., Bersenyi, A.: Cellulase fermentation on a novel substrate (waste card board) and subsequent utilization of home produced cellulase and commercial amylase in a rabbit feeding trail. Ind. Crops Prod. 20, 49–57 (2004)

    Google Scholar 

  164. Ali, S., Sayed, A., Sarkar, R.I., Alam, R.: Factors effecting cellulase production by A Aspergillus terrus using water hyacinth. World J. Microbiol. Biotechnol. 7, 62–66 (1991)

    Google Scholar 

  165. Mukhopadhyay, S., Nandi, B.: Optimization of cellulase production by Trichoderma reesei ATCC 26921 using a simplified medium on water hyacinth biomass. JSIR 58, 107–111 (1999)

    Google Scholar 

  166. Deshpande, P., Nair, S., Khedkar, S.: Water hyacinth as carbon source for the production of cellulase by Trichoderm reesei. Appl. Biochem. Biotechnol. 158, 552–560 (2009)

    Google Scholar 

  167. Silva FL., Campos AO., Santos DA., Oliveira Júnior SD., Padilha CEA., Sousa Junior FC., Macedo GR., Santos ES.: Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation. Renew Energy. 116(Part A):299-308 (2018)

  168. Ojumu, T.V., Solomon, B., Betika, V.E., Layokun, S.K., Amigun, B.: Cellulase production by Aspergillus flavus linn isolate NSPR 101 fermented in sawdust, bagasse and corn cob. Afr. J. Biotechnol. 2(6), 150–152 (2003)

    Google Scholar 

  169. Libardi N, Soccol CR, Góes-Neto A, Oliveira J de, de Vandenberghe LPS.: Simultaneous cellulase production using domestic wastewater and bioprocess effluent treatment—a biorefinery approach. Bioresour Technol 276:42-50 (2019)

  170. Nawwi KE and Kader AAE.: Production of single cell protein and cellulase from sugarcane bagasse: Effect of culture factors. Biomass Bioenergy 11:361-364 (1996)

  171. Vyas, A., Vyas, D.: Production of fungal cellulase by solid state bioprocessing of ground nut shell waste. JSIR 64, 767–770 (2005)

    Google Scholar 

  172. Pathania, S., Sharma, S., Handa, S.: Utilization of horticultural waste (Apple Pomace) for multiple carbohydrase production from Rhizopus delemar F2 under solid state fermentation. J Genet Eng Biotechnol 16(1), 181–189 (2018)

    Google Scholar 

  173. Couri, S., Terzi, S.D.C., Pinto, G.A.S., Freitas, S.P., Costa, A.C.A.D.: Hydrolytic enzyme production in solid state fermentation by Aspergillus niger 3T588. Process Biochem. 36, 255–261 (2000)

    Google Scholar 

  174. Eliasashvili, V., Penninckx, M., Kachlishvili, E., Astiani, M., Kvesitadze, G.: Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarine peels and tree leaves. Enzyme Microbial Technol 38, 998–1004 (2006)

    Google Scholar 

  175. Umikalsom, M.S., Arriff, A.B., Zulkifli, H.S., Tong, C.C., Hassan, M.A., Karim, M.I.A.: The treatment of oil palm empty fruit bunch fiber for subsequent use as substrate for cellulase production by Chaetomium globossum Kunze. Bioresour. Technol. 62, 1–9 (1997)

    Google Scholar 

  176. He YC, Gong L, Liu F, Lu T, Qing Q, Wang LQ, Zhang Y, Gao FT, Wang X.: Waste biogas residue from cassava dregs as carbon source to produce Galactomyces sp. Cczu11-1 cellulase and its enzymatic saccharification. Appl Biochem Biotechnol. 173(4), 894-903 (2014)

  177. Wang H., Kaur G., Pensupa N., Uisan K., Du C., XiaofengYang X., Lin CSK.: Textile waste valorization using submerged filamentous fungal fermentation. Process Saf. Environ. Prot. 118, 143–151 (2018)

  178. Hu, Y., Du C., Pensupa N., Lin CNK.: Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf Environ Prot 118:133-142 (2018)

  179. Kovas, K., Megyeri, L., Szakacs, G., Kubicek, C.P., Galbe, M., Zacchi, G.: Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme Microb. Technol. 43, 48–55 (2008)

    Google Scholar 

  180. Damato, G., Vivona, G., Stoller, M., Bubbico, R., Bravi, M.: Cellulase production from olive processing residues. Chem. Eng. Trans. 20, 73–78 (2010)

    Google Scholar 

  181. Verma, N., Kumar, V., Bansal, M.C.: Utility of Luffa cylindrica and Litchi chinensis peel, an agricultural waste biomass in cellulase production by Trichoderma reesei under solid state cultivation. Biocatal. Agric. Biotechnol. 16, 483–492 (2018)

    Google Scholar 

  182. Vijayaraghavan P, Vincent SGP, Dhillon GS.:Solid-substrate bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18. Waste Manage 48:513–20 (2016)

  183. Vijayaraghavan, P., Arun, A., Al-Dhabi, N.A., Vincent SGP., Arasu M.V., Choi KC.: Novel Bacillus subtilis IND19 cell factory for the simultaneous production of carboxy methyl cellulase and protease using cow dung substrate in solid-substrate fermentation. Biotechnol Biofuels 9:73 (2016)

  184. Franceschin, G., Favaron, C., Bertucco, A.: Waste paper as carbohydrate source for biofuel production: an experimental investigation. Chem. Eng. Trans. 20, 279–284 (2010)

    Google Scholar 

  185. Kumar, R., Mandal, S.K.: Utility of banana peel waste in the hemicellulases production. Mapna J Sci 5(1), 47–53 (2006)

    MathSciNet  Google Scholar 

  186. Dedavide Silva, L.A., Lopes, F.C., Silveira, S.T., Brandelli, A.: Production of cellulolytic enzymes by Aspergillus phoenicis in grape waste using response surface methodology. Appl. Biochem. Biotechnol. 152, 295–305 (2009)

    Google Scholar 

  187. Pirt, S.J.: Principles of Cell Cultivation. Blackwell Scientific, London (1973)

    Google Scholar 

  188. Widowati, E., Utami, R., Mahadjoeno, E., Saputro, G.P.: Effect of temperature and pH onpolygalacturonase production by pectinolyticbacteria Bacillus licheniformis strain GD2a insubmerged medium from Raja Nangka (Musaparadisiaca var. formatypica) banana peel waste. IOP Conf. Ser (2017)

  189. Palmarola-Adrados, B., Choteborska, P., Galbe, M., Zacchi, G.: Ethanol production from non starch carbohydrates of wheat bran. Bioresource Technol. 96, 843–850 (2005)

    Google Scholar 

  190. Ghose, T.K., Sahai, V.: Production of celluleses by Trichoderma reesei Q M 9414 in fed batch and continuous flow culture with cell recycle. Biotechnol. Bioeng. 21, 283–296 (1979)

    Google Scholar 

  191. Jourdier, E., Cohen, C., Poughon, L., Larroche, C., Monot, F., Chaabane, F.B.: Cellulase activity mapping of Trichoderma reesei cultivated in sugar mixtures under fed-batch conditions. Biotechnol. Biofuels 6, 79 (2013)

    Google Scholar 

  192. Sharma, S., Sharma, V. & Kuila, A.:Cellulase production using natural medium and its application on enzymatic hydrolysis of thermo chemically pretreated biomass. 3Biotech 6(2), 139 (2016)

  193. Libardi, N., Soccol, C.R., Góes-Neto, A., de Oliveira, J., de Vandenberghe, L.P.S.: Simultaneous cellulase production using domestic wastewater and bioprocess effluent treatment—a biorefinery approach. Bioresour. Technol. 276, 42–50 (2019)

    Google Scholar 

  194. Abdeshahian, P., Samat, N., Hamid, A.A., Yusoff WMW.: Solid substrate fermen tation for cellulase production using palm kernel cake as a renewable lignocellulosic source in packedbed bioreacor. Biotechnol Eng 16(2), 238–224 (2011)

  195. Villena,G.K and Guiterrez–Correa M.:Production of cellulases by Aspergillus niger biofilm developed on polyester cloth. Lett Appl Microbiol 4, 262-268 (2006)

  196. Villena, G.K., Guiterrez-Correa, M.: Production of lignolytic enzymes by Aspergillus niger biofilms at variable water activites. Electron J Biotechnol 10 (2007)

  197. Mishra, P.K., Srivastava, K.K.: Variations of local heat transfer coefficients of gas fluidized bed. In: Proceedings of Conference on Thermal Systems at Institute of Technology, B.H.U, Varanasi (1995)

  198. Nigam, P.: Processing of agriculture wastes in solid state fermentation for cellulolytic enzyme production”. JSIR,55, 457-463,(1996)

  199. Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T.: Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol. 74, 69–80(2000)

  200. Srivastava KN, Srivastava,K.K, Gupta SN and Singh D.:Heat transfer from flat plate to water, ethanol under pool boiling”,Proceedings on Thermal System, at Institute of Technology, B.H.U, Varanasi,371,(1986)

  201. Tao, S., Zuohu, L., Deming, L.: A novel design of solid state fermenter and its evaluation for cellulase production by Trichoderma viride SL -1”. Biotech Letts 10, 889–895 (1996)

    Google Scholar 

  202. Tengedy, R.P.: Cellulase production by solid state fermentation”. JSIR. 55, 313–316 (1996)

    Google Scholar 

  203. Mathew,G.M.,Sukumaran,R.K.,Singhania,R.R., Pandey,A.: Progress in research on fungal cellulases for lignocellulosic degradation, JSIR,67:898-907(2008)

  204. Prasad,S., Singh,A,Joshi, H.C.:Ethanol as an alternative fuel from agricultural, industrial and urban residue.Resources, Conservation and Recycling 50: 1–39 (2007)

  205. Canilha L., Rodrigues R.D.C.L.B., Antunes FAF., Chandel AK., MilessiTSDS.,Felipe MDGA., da SilvaS.S.Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification and Ethanol Fermentation, Journal of Biomedicine and Biotechnology, 2012:15(2012)

  206. Pessoa Jr A.,Mancilha I.M.,Sato S.Acid hydrolysis of hemicellulose from sugarcane bagasse., Brazilian Journal of Chemical Engineering.14: no-3(1997)

  207. Lavarack B.P., Griffin G.J., Rodman D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products.,Biomass and Bioenergy,23(5):367-380(2002)

  208. Paniagua A.I., Diez-Antolinez R., Hijosa-Valsero M., Sanchez M.E., Coca M. Response surface optimization of dilute sulfuric acid pretreatment of switchgrass (Panicum virgatum l.) for fermentable sugars production, Chemical Engineering Transactions,49, 223-228(2016)

  209. Lever M,Goen H, Cord-Ruwisch R, “Ethanol from lignocelluloses using crude unprocessed cellulase from solid state fermentation,. Bioresource Technology, 28 Apr 2010, 101(18):7094-7098(2010)

  210. de Souza M. F., da Silva Bon E. B., da Silva A.S.A., On-site integrated production of cellulases and β-glucosidases by Trichoderma reesei Rut C30 using steam-pretreated sugarcane bagasse, bioRxiv. https://doi.org/10.1101/461012

  211. Kumar, B., Bhardwaj, N., Alam, A., et al.: Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes. AMB Expr 8, 173 (2018). https://doi.org/10.1186/s13568-018-0696-y

    Article  Google Scholar 

  212. Saini, A., Aggarwal, N.K. & Yadav, A. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. 3 Biotech 7, 12 (2017). https://doi.org/10.1007/s13205-017-0604-1

  213. https://www.reportsnreports.com/reports/2803977-global-cellulase-cas-9012-54-8-market-research-report-2020.html

  214. Nawwi, K.E., Kader, A.A.E.: Production of single cell protein and cellulase from sugarcane bagasse: effect of culture factors. Biomass Bioenergy 11, 361–364 (1996)

    Google Scholar 

  215. Oberoi H.S, Chavan Y,Bansal S and Dhillon G.S, “Production of cellulases through solid state fermentation using kinnow pulp as major substrate”,Food Bioprocess Technol,(2008)

  216. Tengerdy,R.P. and Szakacs G, “Bioconversion of lignocelluloses in solid state fermentation”, Biochem Engg J 13,169–179.(2003)

  217. Sorek N.,Yeats T.H.,Szemenyei H.,Youngs H.,Somerville C.R.:The Implications of Lignocellulosic Biomass Chemical Composition for the Production of Advanced Biofuels.,BioScience,64.,Issue 3.,192-201(2014)

  218. Sarsan S., Merugu R.:Role of Bioprocess Parameters to Improve Cellulase Production: Part II., New and Future Developments in Microbial Biotechnology and BioengineeringFrom Cellulose to Cellulase: Strategies to Improve Biofuel Production,77-97(2019)

  219. Saini R.,Saini J.K.,Adsul M.,Patel A.K.,Mathur A.,Tuli D.,Singhania R.R.Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application.,Bioresource Technology.,188.,240-246(2015)

  220. Li, Y., Lin, J., Meng, D., Lu, J., Gu, G., Mao, Z.: Effect of pH, cultivation time and substrate concentration on the endoxylanase production by Aspergillus awamori ZH-26 under submerged fermentation using central composite rotary designs”. Food Technol Biotechnol 44(4), 473–477 (2006)

    Google Scholar 

  221. Mohammad SF, Feng Y, Yang G.: Optimization of cell culture and cell disruption processes to enhance the production of thermophilic cellulase FnCel5A in E.coli using response surface methodology. PLoS ONE 14(1)(2019)

  222. Singhania, R.R., Sukumaran, R.K., Pandey, A.: Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl. Biochem. Biotechnol. 142, 60–70 (2007)

    Google Scholar 

  223. Singh, R., Kumar, R., Bishnoi, K., Bishnoi, N.R.: Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology. Biochem. Eng. J. 48, 28–35 (2009)

    Google Scholar 

  224. Dueñas R, Tengerdy RP, Gutierrez-Correa M., Cellulase production by mixed fungi in solid-substrate fermentation of bagasse., World J Microbiol Biotechnol.11(3):333-7(1995)

  225. Adsul M.G,Bastawdek B,Verma,A.J and Gokhle D.V.:Strain improvement of Penicillium janthenellum”,Bioresource Technol,98,1467-1473.,(2007)

  226. Parikh,S.,Vinciv, A and Strobel, R.J,.:Improvement of microbial strains and fermentation process”,Appl Microbiol Biotechnol,54,287-303.,(2000)

  227. Dhawan, S., Lal, R., Kuhad, R.C.: Ethidium bromide stimulated hyper laccase production from bird’s nest fungus Cyathus bulleri”. Letts Appl Microbiol 36(1), 64–67 (2003)

    Google Scholar 

  228. Demain A.L and Birnbaum J,Curr Topics Microbiol Immunology,46,1-29,(1968)

  229. Chad P,Aruna A,MaqsoodA.M and RaoL.V.:Novel mutation method for improved cellulase production”,J Appl Microbiol,96,318-323, (2005)

  230. Araujo A,Word OP and Disouza J.:Use of mutant strategies applied to Aspergillus terreus ATCC 52430 to obtain mutans with improved cellulase productivity”.Biotechnology Technique,5:283-288,(1991)

  231. Dong M.,Wang S.,Xiao G.,Xu F.,Li Q.,Chen J.,Li W.:Cellulase production by Aspergillus fumigatus MS13.1 mutant generated by heavy ion mutagenesis and its efficient saccharification of pretreated sweet sorghum straw.,Process Biochemistry., 84.,22-29(2015)

  232. Sadhu S.,Ghosh P.K.,Aditya G.,Maiti T.K.:Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung., Journal of King Saud University - Science.,26.,Issue-4.,323-332(2014)

  233. Fang X.,Yano S.,Inoue H.,Sawayama S.:Strain improvement of Acremonium cellulolyticus for cellulase production by mutation.,Journal of Bioscience and Bioengineering,107,Issue-3.,256-261(2009)

  234. Zhong Y.,XiaoliWang X.,HainaYu H.,ShaorongLiang S.,TianhongWang T.Application of T-DNA insertional mutagenesis for improving cellulase production in the filamentous fungus Trichoderma reesei.,Bioresource Technology.,110., 572-577(2012)

  235. Zhang X-Y.,Zi L-H.,Ge X-M.,Li Y-H.,Liu C-G.,Bai F-W.: Development of Trichoderma reesei mutants by combined mutagenesis and induction of cellulase by low-cost corn starch hydrolysate., Process Biochemistry.,54.,96-101(2017)

  236. Kovács K., Megyeri L., SzakacsG., Kubicek C.P., Galbe M., Zacchi G.: Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow., Enzyme and Microbial Technology.,43.,Issue-1.,48-55(2008)

  237. Kaur B.,Oberoi H.S.,Chadha B.S.:Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain.,Bioresorce Technology.,156.,100-107(2014)

  238. Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY., Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool., Appl Microbiol Biotechnol. 98(12):5387-96(2014)

  239. Ottenheim C., NawrathM., Wu J.C.,:Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development.,Bioresources and Bioprocessing., volume 5, Article number: 12 (2018)

  240. Ahmed, M., Barkly, El: Gene Transfer between Different Trichoderma Species and Aspergillus niger through intergeneric protoplast fusion to convert ground rice straw to citric acid and cellulase. Appl. Biochem. Biotechnol. 135, 117–132 (2006)

    Google Scholar 

  241. Prabavarthy VR,mathiavanan N,Sagadevan E,Murugesan K,Lalithakumari D,2006.Intrastrain protoplast fusion enhances carboxymethylcellulase activity in Trichodermma reesei.Enzyme Microbiol Technol.,38:719-723

  242. Dillon A.J.P., Camassola M., Henriques J.A.P., Fungaro M.H.P., Azevedo A.C.S., Velho T.A.F., Laguna S.E., Generation of recombinants strains to cellulases production by protoplast fusion between Penicillium echinulatum and Trichoderma harzianum.,Enzyme and Microbial Technology.,43.,Issue-6.,403-409(2008)

  243. Misra P.,Shukla P.K.,PrasadRao K.,Ramteke P.W.: Genetic Engineering Applications to Improve Cellulase Production and Efficiency: Part II., New and Future Developments in Microbial Biotechnology and Bioengineering.,From Cellulose to Cellulase: Strategies to Improve Biofuel Production.,227-260(2019)

  244. LaCroix R.A.,Sandberg T.E.,O’Brien E.J., Utrilla J., Ebrahim A., Gabriela I. Guzman G.I., Szubin R., Palsson B.O., Feist.A.M., Use of Adaptive Laboratory Evolution To Discover Key Mutations Enabling Rapid Growth of Escherichia coli K-12 MG1655 on Glucose Minimal Medium.,Edited by R.M.Kelly., Evolutionary and Genomic Microbiology.,Applied and Environmental Microbiology

  245. Cameron, D.E., Bashor, C.J., Collins, J.J.: A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014)

    Google Scholar 

  246. Way, J.C., Collins, J.J., Keasling, J.D., Silver, P.: A: integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 157, 151–161 (2014)

    Google Scholar 

  247. Nieves, L.M., Panyon, L.A., Wang, X.: Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front. Bioeng. Biotechnol. 3, 17 (2015)

    Google Scholar 

  248. Srivastava N., Srivastava M.,Ramteke P.W.,Mishra P.K.Synthetic Biology Strategy for Microbial Cellulases: An Overview., New and Future Developments in Microbial Biotechnology and Bioengineering.,Microbial Genes Biochemistry and Applications.,229-238(2019)

  249. Sirohi R.,Singh A.,Tarafdar A.,Shahi N.C.:Application of genetic algorithm in modelling and optimization of cellulase production.,Bioresource Technology.,270.,751-754(2018)

  250. Phillips E:. Genetic Engineering Applications to Improve Cellulase Production and Efficiency: Part I., New and Future Developments in Microbial Biotechnology and BioengineeringFrom Cellulose to Cellulase: Strategies to Improve Biofuel Production.,209-225(2019)

  251. Zhang F.,Zhao X.,Bai F.:Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1.,Bioresource Technology.,247.,676-683(2018)

  252. Singhania R.R.,Patel A.K.,Pandey A., Ganansounou E.:Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application.,Bioresource Technology.,245.,Part –B.,1352-1361(2017)

  253. Sahoo K., Sahoo R.K.,Gaur M.,Subdhi E.:Isolation of Cellulase Genes From Thermophilies: A Novel Approach Toward New Gene Discovery., New and Future Developments in Microbial Biotechnology and Bioengineering.,Microbial Genes Biochemistry and Applications.,151-169(2019)

  254. Liu G.,Wang S.:Applications of RNA Interference for Enhanced Cellulase Production in Trichoderma., Biotechnology and Biology of Trichoderma.,201-213(2014)

  255. Greene E.R.,Himmel M.E.,Beckham G.T.,Tan Z.: Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels., Advances in Carbohydrate Chemistry and Biochemistry.,72.,63-112(2015)

  256. Kubicek C.P.: Systems biological approaches towards understanding cellulase production by Trichoderma reesei., Journal of Biotechnology.,163., Issue-2.,133-142(2013)

  257. Kun R.S.,Gomes A.C.S.,Hilden K.S.,Cerezo S.S.,Makela M.R., de Vries R.P.:Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation., Article in Press(2019)

  258. Ulaganathan K.,Goud S.,Reddy M.,Kayalvili U.:Genome engineering for breaking barriers in lignocellulosic bioethanol production., Renewable and Sustainable Energy Reviews.,74.,1080-1107(2017)

  259. Liu J., Lin Q., Chai X., Luo Y., Guo T.:Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304.,Microbial Cell Factories. volume 17, Article number: 35 (2018)

  260. Oliva G, Sahr T, Buchrieser C. Small RNAs, 5’ UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence., FEMS Microbiol Rev.39(3):331-49(2015)

  261. Cho S.H., Haning K., Shen W., Blome C., Li R., Yang S.Contreras L.M., Identification and Characterization of 5′ Untranslated Regions (5′UTRs) in Zymomonas mobilis as Regulatory Biological Parts., Front Microbiol; 8: 2432(2017).

  262. Zhang Y.,Zhang J.,Xiao P.,Wang T.,Qu Y.:Improved cellulase production via disruption of PDE01641 in cellulolytic fungus Penicillium decumbens., Bioresource Technology.,123.,733-737(2012)

  263. Siddhesh B.G.,Sirisha L.V.,Jacinta S.D., Metabolic Engineering and Genetic Manipulation of Novel Biomass Species for Biofuel Production., Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts.,Technologies and Approaches for Scale-Up and Commercialization.,Woodhead Publishing Series in Energy.,13-34(2019)

  264. Wendisch V.F.: Metabolic engineering advances and prospects for amino acid production. Metabolic Engineering. Article in Press (2019)

  265. Valle A.,Cantero D.,Bolivar J.:Metabolic engineering for the optimization of hydrogen production in Escherichia coli: A review., Biotechnology Advances.,37., Issue-5.,616-633(2019)

  266. Yang Y., Hu M., TangY., Geng B., QiuM., He Q., Chen S., Wang X.,Yang S.: Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis.,.Bioresources and Bioprocessing volume 5, Article number: 6 (2018)

  267. Yi, X., Gu, H., Gao, Q., Liu, Z.L., Bao, J.: Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol. Biofuels 8, 153 (2015)

    Google Scholar 

  268. Yang, S., Tschaplinski, T.J., Engle, N.L., Carroll, S.L., Martin, S.L., Davison, B.H., Palumbo, A.V., Rodriguez Jr., M., Brown, S.D.: Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genom 10, 3 (2009)

    Google Scholar 

  269. Wang X., Liang Z., Hou J., Bao X., Shen Y.:Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.,BMC Biotechnology,16, 31 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, N., Kumar, V. & Bansal, M.C. Valorization of Waste Biomass in Fermentative Production of Cellulases: A Review. Waste Biomass Valor 12, 613–640 (2021). https://doi.org/10.1007/s12649-020-01048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01048-8

Keywords

Navigation