Skip to main content

Advertisement

Log in

Investigating Waste Plastic Pyrolysis Kinetic Parameters by Genetic Algorithm Coupled with Thermogravimetric Analysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Pyrolysis of waste plastic (WP) is a promising method to solve the plastic pollution issue. WP is mainly composed of polyethylene (PE). Moreover, the products of waste polyethylene (WPE) pyrolysis could serve as high quality fuels and the feedstocks of petrochemicals. Therefore, it is essential to investigate the WPE and WP pyrolysis process. This study evaluates pure PE, WPE and WP pyrolysis kinetic parameters by the use of genetic algorithm (GA) and isoconversional methods coupled with thermogravimetric analysis (TGA), respectively. Additionally, three representative reaction models, i.e. reaction-order, extended Prout–Tompkins and Sestak–Berggren models, are investigated for obtaining the most suitable model, which could describe the PE, WPE and WP pyrolysis process more accurately. Consequently, the reaction-order model turns out to be the optimal method for appropriately describing PE, WPE and WP pyrolysis processes. Hence, the pyrolysis parameters optimized by GA are proven to be accurate and reliable, in comparison of calculated values of activation energy by isoconversional methods and experimental data. Moreover, it might be applicable of GA coupled with TGA with reaction-order model to the future industrial WPE and WP pyrolysis circumstances that have variable heating rates.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Crippa, M., De Wilde, B., Koopmans, R., Leyssens, J., Muncke, J., Ritschkoff, A.C., Van Doorsselaer, K., Velis, C., Wagner, M.: A circular economy for plastics—Insights from research and innovation to inform policy and funding decisions. European Commission, Brussels, Belgium (M. De Smet & M. Linder, Eds.) (2019)

  2. Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W., Aroua, M.K.: A review on pyrolysis of plastic wastes. Energ. Convers. Manag. 115, 308–326 (2016)

    Google Scholar 

  3. Al-Salem, S.M., Antelava, A., Constantinou, A., Manos, G., Dutta, A.: A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 197, 177–198 (2017)

    Google Scholar 

  4. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L.: Plastic waste inputs from land into the ocean. Science 347(6223), 768–771 (2015)

    Google Scholar 

  5. Al-Salem, S.M., Lettieri, P., Baeyens, J.: Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29(10), 2625–2643 (2009)

    Google Scholar 

  6. Al-Salem, S.M., Lettieri, P., Baeyens, J.: The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog. Energy Combust. Sci. 36(1), 103–129 (2010)

    Google Scholar 

  7. Panda, A.K., Alotaibi, A., Kozhevnikov, I.V., Shiju, N.R.: Pyrolysis of plastics to liquid fuel using sulphated zirconium hydroxide catalyst. Waste Biomass Valorization 10, 3735–3744 (2019)

    Google Scholar 

  8. Dash, A., Kumar, S., Singh, R.K.: Thermolysis of medical waste (waste syringe) to liquid fuel using semi batch reactor. Waste Biomass Valorization 6(4), 507–514 (2015)

    Google Scholar 

  9. Grigiante, M., Ischia, M., Baratieri, M., Dal Maschio, R., Ragazzi, M.: Pyrolysis analysis and solid residue stabilization of polymers, waste tyres, spruce sawdust and sewage sludge. Waste Biomass Valorization 1(4), 381–393 (2010)

    Google Scholar 

  10. Sun, K., Huang, Q.X., Ali, M., Chi, Y., Yan, J.H.: Producing aromatic-enriched oil from mixed plastics using activated biochar as catalyst. Energy Fuel 32(4), 5471–5479 (2018)

    Google Scholar 

  11. Kumar, S., Panda, A.K., Singh, R.: A review on tertiary recycling of high-density polyethylene to fuel. Resour. Conserv. Recycl. 55(11), 893–910 (2011)

    Google Scholar 

  12. Brems, A., Baeyens, J., Dewil, R.: Recycling and recovery of post-consumer plastic solid waste in a European context. Therm. Sci. 16(3), 669–685 (2012)

    Google Scholar 

  13. Ragaert, K., Delva, L., Van Geem, K.: Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017)

    Google Scholar 

  14. Sun, K., Huang, Q.X., Meng, X.D., Chi, Y., Yan, J.H.: Catalytic pyrolysis of waste polyethylene into aromatics by H3PO4-activated carbon. Energy Fuel. 32(9), 9772–9781 (2018)

    Google Scholar 

  15. Onwudili, J.A., Insura, N., Williams, P.T.: Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. J. Anal. Appl. Pyrol. 86(2), 293–303 (2009)

    Google Scholar 

  16. Kple, M., Girods, P., Fagla, B., Anjorin, M., Ziegler-Devin, I., Rogaume, Y.: Kinetic study of low density polyethylene using thermogravimetric analysis, Part 2: Isothermal study. Waste Biomass Valorization 8(3), 707–719 (2017)

    Google Scholar 

  17. Bercic, G., Djinovic, P., Pintar, A.: Simplified approach to modelling the catalytic degradation of low-density polyethylene (LDPE) by applying catalyst-free LDPE-TG profiles and the Friedman method. J. Therm. Anal. Calorim. 136(3), 1011–1020 (2019)

    Google Scholar 

  18. Zheng, Y.W., Tao, L., Yang, X.Q., Huang, Y.B., Liu, C., Zheng, Z.F.: Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS. J. Anal. Appl. Pyrol. 133, 185–197 (2018)

    Google Scholar 

  19. Xiang, Z.P., Liang, J.H., Morgan, H.M., Liu, Y.Y., Mao, H.P., Bu, Q.: Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Bioresource Technol. 247, 804–811 (2018)

    Google Scholar 

  20. Das, P., Tiwari, P.: Thermal degradation kinetics of plastics and model selection. Thermochim. Acta 654, 191–202 (2017)

    Google Scholar 

  21. Aboulkas, A., El Harfi, K., El Bouadili, A.: Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Convers. Manag. 51(7), 1363–1369 (2010)

    Google Scholar 

  22. Nzioka, A.M., Kim, M.G., Hwang, H.U., Kim, Y.J.: Kinetic study of the thermal decomposition process of municipal solid waste using TGA. Waste Biomass Valorization 10(6), 1679–1691 (2019)

    Google Scholar 

  23. El Abbari, H., Bentahar, S., El Marouani, M., Taibi, M., Zeriouh, A., Sebbahi, S., Kifani-Sahban, F.: Thermal and thermomechanical behavior of Moroccan Boufeggous variety date seeds. J. Therm. Anal. Calorim. 137(5), 1485–1492 (2019)

    Google Scholar 

  24. Ippolito, N.M., Cafiero, L., Tuffi, R., Ciprioti, S.V.: Characterization of the residue of a commingled post-consumer plastic waste treatment plant: a thermal, spectroscopic and pyrolysis kinetic study. J. Therm. Anal. Calorim. 138(5), 3323–3333 (2019)

    Google Scholar 

  25. Wang, J.X., Zhao, H.B.: Error evaluation on pyrolysis kinetics of sawdust using iso-conversional methods. J. Therm. Anal. Calorim. 124, 1635–1640 (2016)

    Google Scholar 

  26. Wang, Z., Wei, R.C., Ning, X.Y., Xie, T., Wang, J.: Thermal degradation properties of LDPE insulation for new and aged fine wires. J. Therm. Anal. Calorim. 137(2), 461–471 (2019)

    Google Scholar 

  27. Friedman, H.: Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Applications to a phenol plastic. J. Polym. Sci. 6(1), 183–195 (1963)

    Google Scholar 

  28. Akahira, T., Sunose, T.: Method of determining activation deterioration constant of electrical insulating materials. Res. Report Chiba Inst. Technol. (Sci. Technol.) 16, 22–31 (1971)

  29. Flynn, J.H., Wall, L.A.: General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Standards Part A 70A(6), 487–523 (1966)

    Google Scholar 

  30. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C., Sbirrazzuoli, N.: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520(1–2), 1–19 (2011)

    Google Scholar 

  31. Coats, A.W., Redfern, J.: Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964)

    Google Scholar 

  32. Yang, K.K., Wang, X.L., Wang, Y.Z., Wu, B., Jin, Y.D., Yang, B.: Kinetics of thermal degradation and thermal oxidative degradation of poly(p-dioxanone). Eur. Polym. J. 39(8), 1567–1574 (2003)

    Google Scholar 

  33. Criado, J.M.: Kinetic analysis of DTG data from master curves. Termochim. Acta 24(1), 186–189 (1978)

    Google Scholar 

  34. Starink, M.J.: The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta 404(1–2), 163–176 (2003)

    Google Scholar 

  35. Duque, J.V.F., Martins, M.F., Debenest, G., Orlando, M.T.D.: The influence of the recycling stress history on LDPE waste pyrolysis. Polym. Test. 86, 106460 (2020)

    Google Scholar 

  36. Lautenberger, C., Rein, G., Fernandez-Pello, C.: The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf. J. 41(3), 204–214 (2006)

    Google Scholar 

  37. Park, T.Y., Froment, G.F.: A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models. Comput. Chem. Eng. 22(S), S103–S110 (1998)

    Google Scholar 

  38. Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson, C.W.: Genetic algorithms for optimisation of chemical kinetics reaction mechanisms. Prog. Energy Combust. 30(3), 297–328 (2004)

    MATH  Google Scholar 

  39. Rein, G., Lautenberger, C., Fernandez-Pello, A.C., Torero, J.L., Urban, D.L.: Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust. Flame 146, 95–108 (2006)

    Google Scholar 

  40. Lapene, A., Debenest, G., Quintard, M., Castanier, L.M., Gerritsen, M.G., Kovscek, A.R.: Kinetics oxidation of heavy oil. 2. Application of genetic algorithm for evaluation of kinetic parameters. Energy Fuel 29(2), 1119–1129 (2015)

    Google Scholar 

  41. Jiang, L., Xiao, H.H., He, J.J., Sun, Q., Gong, L., Sun, J.H.: Application of genetic algorithm to pyrolysis of typical polymers. Fuel Process. Technol. 138, 48–55 (2015)

    Google Scholar 

  42. Chen, R.Y., Xu, X.K., Zhang, Y., Lo, S.M., Lu, S.X.: Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic. Appl. Therm. Eng. 136, 484–491 (2018)

    Google Scholar 

  43. Sestak, J., Berggren, G.: Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta 3(1), 1–12 (1971)

    Google Scholar 

  44. Kple, M., Girods, P., Fagla, B., Anjorin, M., Ziegler-Devin, I., Rogaume, Y.: Kinetic study of low density polyethylene using thermogravimetric analysis, Part 2: Isothermal Study. Waste Biomass Valorization 8(3), 707–719 (2017)

    Google Scholar 

  45. Encinar, J.M., Gonzalez, J.F.: Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process Technol. 89(7), 678–686 (2008)

    Google Scholar 

  46. Vyazovkin, S., Sbirrazzuoli, N.: Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. 27(18), 1515–1532 (2006)

    Google Scholar 

  47. Peterson, J.D., Vyazovkin, S., Wight, C.A.: Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 202(6), 775–784 (2001)

    Google Scholar 

  48. Xu, F.F., Wang, B., Yang, D., Hao, J.H., Qiao, Y.Y., Tian, Y.Y.: Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Energy Convers. Manage. 171, 1106–1115 (2018)

    Google Scholar 

  49. Simon, P.: Isoconversional methods. J. Therm. Anal. Calorim. 76, 123–132 (2004)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the China Scholarship Council (CSC) program. Thanks are given to Prof. Kinglston Soares for his assistance in the experimental work and Dr. H. Yao (Xiamen University) for providing the guidance of the ordinary differential equation calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérald Debenest.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Duque, J.V.F. & Debenest, G. Investigating Waste Plastic Pyrolysis Kinetic Parameters by Genetic Algorithm Coupled with Thermogravimetric Analysis. Waste Biomass Valor 12, 2623–2637 (2021). https://doi.org/10.1007/s12649-020-01181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01181-4

Keywords

Navigation