Skip to main content

Advertisement

Log in

Valorization of Phosphate Sludge: Synthesis of Anti-corrosion Pigments, Physicochemical Study and Application to the Protection of Mild Steel in a 3% NaCl Medium

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of this work is to develop a pigment basing on phosphate washing sludge to valorise this wastes as an environmentally friendly corrosion inhibitor for mild steel in chloride medium. For this purpose, potassium zinc phosphate (PZPb) was synthesized from Moroccan phosphate sludge (PS) using the dissolution–precipitation method and ZnCl2 and KOH chemical precursors. The chemical profile of the resulting compound was analysed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The synthesized pigment is a mixture of zinc phosphate and zinc potassium phosphate phases. The inhibitory performance of PZPb was investigated and compared to potassium phosphate inhibitor synthesized using commercial phosphoric acid (PZPc). The corrosion study was achieved on mild steel in a 3% NaCl aqueous solution by means of electrochemical impedance spectroscopy (EIS) and linear polarization (LPR). Results obtained showed high inhibitive efficiency and similar behaviour of PZPb pigment in comparison with PZPc one. Electrochemical data and surface analysis, including DRX and MEB-EDS indicate that the elaborated pigment acts by reinforcing the protective properties of steel corrosion products. Thus, the pseudo protective layer formed consists of an iron oxi-hydroxide layer doped with iron zinc phosphate phases. These latest were found to be firmly bound to the oxide layer and uniformly distributed throughout the layer pores.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Hakkou, R., Benzaazoua, M., Bussière, B.: Valorization of phosphate waste rocks and sludge from the Moroccan phosphate mines: challenges and perspectives. Procedia Eng. 138, 110–118 (2016). https://doi.org/10.1016/j.proeng.2016.02.068

    Article  Google Scholar 

  2. Ouakibi, O., Hakkou, R., Benzaazoua, M.: Phosphate carbonated wastes used as drains for acidic mine drainage passive treatment. Procedia Eng. 83, 407–414 (2014). https://doi.org/10.1016/j.proeng.2014.09.049

    Article  Google Scholar 

  3. Harech, M.A., Mesnaoui, M., Abouliatim, Y., Hafiane, E.L., Benhammou, Y., Abourriche, A., Nibou, L.: Effect of temperature and clay addition on the thermal behavior of phosphate sludge. Boletín de La Sociedad Española de Cerámica y Vidrio (2020). https://doi.org/10.1016/j.bsecv.2020.03.002

    Article  Google Scholar 

  4. Hamdane, H., Tamraoui, Y., Mansouri, S., Oumam, M., Bouih, A., El Ghailassi, T., Hannache, H.: Statistical modeling of geopolymers from dual-alkali activation of un-calcined phosphate sludge and their potential applications as sustainable coating materials. J. Clean. Prod. 283, 125421 (2021). https://doi.org/10.1016/j.jclepro.2020.125421

    Article  Google Scholar 

  5. Moukannaa, S., Loutou, M., Benzaazoua, M., Vitola, L., Alami, J., Hakkou, R.: Recycling of phosphate mine tailings for the production of geopolymers. J. Clean. Prod. 185, 891–903 (2018). https://doi.org/10.1016/j.jclepro.2018.03.094

    Article  Google Scholar 

  6. Brahim, B., Elabed, A., El Modafar, C., Douira, A., Soumia, A., Maltouf, A.F., et al.: Reusing phosphate sludge enriched by phosphate solubilizing bacteria as biofertilizer: growth promotion of Zea Mays. Biocatal. Agric. Biotechnol. (2020). https://doi.org/10.1016/j.bcab.2020.101825

    Article  Google Scholar 

  7. Loutou, M., Hajjaji, M., Mansori, M., Favotto, C., Hakkou, R.: Heated blends of phosphate waste: microstructure characterization, effects of processingfactors and use as fertilizer. J. Waste Manag. 177, 169–176 (2016). https://doi.org/10.1016/j.jenvman.2016.04.030

    Article  Google Scholar 

  8. Ayouch, I., Barrak, I., Kassab, Z., Achaby, M.E., Barhoun, A., Draoui, K.: Improved recovery of cadmium from aqueous medium by alginate composite beads filled by bentonite and phosphate washing sludge. J. Colloids Surf. A: Physicochem. Eng. Asp. 604, 1205 (2020). https://doi.org/10.1016/j.colsurfa.2020.125305

    Article  Google Scholar 

  9. Abbout, S., Hsissou, R., Chebabe, D., Erramli, H., Hajjaji, N.: Investigation of the anti-corrosion properties of galactomannan as additive in epoxy coatings for carbon steel: rheological and electrochemical study. Inorg. Chem. Commun. 134, 1971 (2021). https://doi.org/10.1016/j.inoche.2021.108971

    Article  Google Scholar 

  10. Fekri, F., Shahidi, M., Foroughi, M.M., Kazemipour, M.: Investigation of polypyrrole coatings containing nanosized metal oxides for corrosion protection of AA2024 Al alloy. J. Electrochem. Sci. Technol. 10(2), 148–158 (2019). https://doi.org/10.5229/JECST.2019.10.2.148

    Article  Google Scholar 

  11. Kim, Y.H., Kwon, Y.S., Shon, M.Y., Moon, M.J.: Corrosion protection performance of PVDF/PMMA-blended coatings by electrochemical impedance method. J. Electrochem. Sci. Technol. 9(1), 1–8 (2018). https://doi.org/10.1002/maco.201006035

    Article  Google Scholar 

  12. Bastos, A.C., Ferreira, M.G.S., Sim ̃oes, A.M.: Comparative electrochemical studies of zinc chromate and zinc phosphate as corrosion inhibitors for zinc. Prog. Org. Coat. 52, 339–350 (2005). https://doi.org/10.1016/j.porgcoat.2004.09.009

    Article  Google Scholar 

  13. Sinko, J.: Challenges of chromate inhibitor pigments replacement in organic coatings. Prog. Org. Coat. 42, 267 (2001). https://doi.org/10.1016/S0300-9440(01)00202-8

    Article  Google Scholar 

  14. Sidney, A., Katz, H.: Salem, The toxicology of chromium with respect to its chemical speciation: a review. J. Appl. Toxicol. 13, 217–224 (1993). https://doi.org/10.1002/jat.2550130314

    Article  Google Scholar 

  15. Yu, H., Xu, J., Xu, Q., Cui, G., Gu, G.: Electrostatic self-assembly of Zn3(PO4)2/GO composite with improved anticorrosive properties of water-borne epoxy coating. Inorg. Chem. Commun. 119, 108015 (2020). https://doi.org/10.1016/j.inoche.2020.108015

    Article  Google Scholar 

  16. Alibakhshi, Ghasemi, E., Mahdavian, M.: Optimization of potassium zinc phosphate anticorrosion pigment by Taguchi experimental design. Prog. Org. Coat. 76(2), 224–30 (2013). https://doi.org/10.1016/J.PORGCOAT.2012.09.009013

    Article  Google Scholar 

  17. Ben Seddik, N., Raissouni, I., Draoui, K., et al.: Anticorrosive performance of lanthanum ions intercalated Stevensite clay on brass in 3% NaCl medium. Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2019.08.085

    Article  Google Scholar 

  18. Ait Aghzzaf, A., Rhouta, B., Rocca, E., Khalil, A.: Zinc carboxylates used as anticorrosive pigments: corrosion inhibition of steel by water extract in NaCl medium. J. Mater. Today: Proc. 13, 1161–1168 (2019). https://doi.org/10.1016/j.matpr.2019.04.084

    Article  Google Scholar 

  19. Naderi, R., Arman, S.Y., Fouladvand, S.H.: Investigation on the inhibition synergism of new generations of phosphate-based anticorrosion pigments. Dyes Pigment 105, 23–33 (2014). https://doi.org/10.1016/j.dyepig.2014.01.015

    Article  Google Scholar 

  20. Vorobyova, V., Skiba, M.: Peach pomace extract as novel cost-effective and high-performance green inhibitor for mild steel corrosion in NaCl solution: experimental and theoretical research. Waste Biomass Valoriz. (2021). https://doi.org/10.1007/s12649-020-01333-6

    Article  Google Scholar 

  21. Vorobyova, V., Skiba, M.: Potential of tomato pomace extract as a multifunction inhibitor corrosion of mild steel. Waste Biomass Valoriz. (2021). https://doi.org/10.1007/s12649-020-01333-6

    Article  Google Scholar 

  22. Atikpo, E., Aigbodion, V.S., Von Kallon, D.V.: CaCO3-derived from eggshell waste for improving the corrosion resistance of zinc composite coating on mild steel for biodiesel storage tank. Chem. Data Collect. (2022). https://doi.org/10.1016/j.cdc.2021.100794

    Article  Google Scholar 

  23. Ghorbani, S., Taji, I., Tavakkolizadeh, M., Davodi, A., de Brito, J.: Improving corrosion resistance of steel rebars in concrete with marble and granite waste dust as partial cement replacement. Constr. Build. Mater. 185, 110–119 (2018). https://doi.org/10.1016/j.conbuildmat.2018.07.066

    Article  Google Scholar 

  24. Heydarpour, M.R., Zarrabi, A., Attar, M.M., Ramezanzadeh, B.: Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments. Prog. Org. Coat. 77, 160–7 (2014). https://doi.org/10.1016/j.porgcoat.2013.09.003

    Article  Google Scholar 

  25. Boltz, D.F., Mellon, M.G.: Spectrophotometric determination of phosphorus as molybdiphosphoric acid. Anal. Chem. 20(8), 749–751 (1948). https://doi.org/10.1021/ac60020a021

    Article  Google Scholar 

  26. Sani, O. M., Adamou, Z., & Ibrahim, N. (2017) Traitement Des Phosphates Naturels De Tahoua (Niger) Par Quelques Acides Conventionnels. European Scientific Journal, ESJ, 13(24): 176. https://doi.org/10.19044/esj.​2017.

  27. Askari, F., Ghasemi, E., Ramezanzadeh, B., Mahdavian, M.: Effects of KOH:ZnCl2 mole ratio on the phase formation, morphological and inhibitive properties of potassium zinc phosphate pigments. J. Alloys Compd. 631, 138–145 (2015). https://doi.org/10.1016/j.jallcom.2014.12.160

    Article  Google Scholar 

  28. Askari, F., Ghasemi, E., Ramezanzadeh, B., Mahdavian, M.: Mechanistic approach for evaluation of the corrosion inhibition of potassium zinc phosphate pigment on the steel surface: application of surface analysis and electrochemical techniques. Dyes Pigment 109, 189–199 (2014). https://doi.org/10.1016/j.dyepig.2014.05.024

    Article  Google Scholar 

  29. Li, F., Zhou, M., Wang, J., Liu, X., Wang, C., Chao, D.: Synthesis and electrochemical properties of electroactive hyperbranched poly(aryl ether ketone) bearing oligoaniline segments. Synth. Met. 205, 42–47 (2015). https://doi.org/10.1016/j.synthmet.2015.03.019

  30. Goplakrishna, G.S., Madhu, S.P., Mahendra, M., Doreswamy, B.H., Mahesh, M.J., Sridhar, M.A., Shashidhara Prasad, J.: Hydrothermal synthesis, crystal structure and characterization of 2(LiZnHP2O7). Mater. Lett. 60, 613–617 (2006). https://doi.org/10.1016/j.matlet.2005.09.057

    Article  Google Scholar 

  31. Chen, D., Ma, Sh., Yu, H., Yuan, A., Liao, A., Wu, J.: Thermal decomposition kinetic and electrochemical properties of KZn2(PO4)(HPO4). J. Adv. Mater. Res. 152, 184–191 (2011). https://doi.org/10.1021/ie300774x

    Article  Google Scholar 

  32. Sun, D., Deng, J., Chao, Z.: Catalysis over zinc-incorporated berlinite (ZnAlPO4) of the methoxycarbonylation of 1, 6-hexanediamine with dimethyl carbonate to form dimethylhexane-1,6-dicarbamate. Chem. Cent. J. 1, 1–27 (2007). https://doi.org/10.1186/F1752-153X-1-27

    Article  Google Scholar 

  33. Alibakhshi, E., Ghasemi, E., Mahdavian, M.: Corrosion inhibition by lithium zinc phosphate pigment. Corros. Sci. 77, 222–229 (2013). https://doi.org/10.1016/j.corsci.2013.08.005

    Article  Google Scholar 

  34. Mahdavian, M., Naderi, R.: Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes. Corros. Sci. 53, 1194–1200 (2011). https://doi.org/10.1016/j.corsci.2010.12.013

    Article  Google Scholar 

  35. Rao, B.V.A., Rao, S.S.: Electrochemical and surface analytical studies of synergistic effect of phosphonate, Zn2+and ascorbate in corrosion control of carbon steel. Mater. Corros. (2009). https://doi.org/10.1002/maco.200905333

    Article  Google Scholar 

  36. Bouali, I., Rocca, E., Veys-Renaux, D., Rhouta, B., Khalil, A., Aït Aghzzaf, A.: Ca2+-exchange in layered zirconium orthophosphate, α-ZrP: chemical study and potential application for zinc corrosion inhibition. J. Appl. Surf. Sci. 422, 778–786 (2017). https://doi.org/10.1016/j.apsusc.2017.06.083

    Article  Google Scholar 

  37. Nabah, R., Benhiba, F., Ramli, Y., Ouakki, M., Cherkaoui, M., Oudda, H., Warad, I., Zarrouk, A.: Corrosion inhibition study of 5, 5-diphenylimidazolidine-2, 4-dione for mild steel corrosion in 1 M HCl solution: experimental, theoretical computational and monte carlo simulations studies. Anal. Bioanal. Electrochem. 10, 1375 (2018)

    Google Scholar 

  38. Yannick Cudennec André Lecerf Étude des mécanismes de formation des oxy-hydroxydes de fer ; hypothèses de transformations topotactiques; Comptes Rendus Chimie 6(4), 437–444. https://doi.org/10.1016/S0022-0728(84)80324-1

  39. Bensabra, H., Azzouz, N., Chopart, J. P.: Effet de la phosphatation au zinc sur la résistance à la corrosion par piqûres des aciers rond à béton. Rev. Metall. 110, 153–163 (2013). https://doi.org/10.1051/metal/2013048

  40. Lindsay, W.L., Moreno, E.C.: Phosphate phase equilibria in soils1. Soil Sci. Soc. Am. J. 24(3), 177 (1960). https://doi.org/10.2136/sssaj1960.03615995002

    Article  Google Scholar 

  41. Thomas, J.G.N.: Br. Corros. J. 5, 41 (1970)

    Article  Google Scholar 

  42. Cartledge, G.H., Spahrbier, G.H.: J. Electrochem. Soc. 110, 644 (1963)

    Article  Google Scholar 

  43. Brasher, D.M., Reichenberg, D., Mercer, A.D.: Br. Corros. J. 3, 144 (1968)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elmourabit.

Ethics declarations

Conflict of interest

I hereby declare that: There are no known conflicts of interest associated with this publication. There has been no significant financial support for this work that could affect the presentation of data in an objective way. The manuscript has been approved by all named authors. Authors have given due consideration to the protection of intellectual property associated with this work and that there are no obstacles to publication, including the timing of publication. Authors have followed the regulations of our institutions concerning intellectual property.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmourabit, M., Allaoui, I., Chaouket, F. et al. Valorization of Phosphate Sludge: Synthesis of Anti-corrosion Pigments, Physicochemical Study and Application to the Protection of Mild Steel in a 3% NaCl Medium. Waste Biomass Valor 14, 4045–4060 (2023). https://doi.org/10.1007/s12649-023-02034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02034-6

Keywords

Navigation