Skip to main content
Log in

Unconventional reservoir potential of the upper Permian Zechstein Group: a slope to basin sequence stratigraphic and sedimentological evaluation of carbonates and organic-rich mudrocks, Northern Germany

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Late Permian Zechstein Group in northeastern Germany is characterized by shelf and slope carbonates that rimmed a basin extending from eastern England through the Netherlands and Germany to Poland. Conventional reservoirs are found in grainstones rimming islands created by pre-existing paleohighs and platform-rimming shoals that compose steep margins in the north and ramp deposits in the southern part. The slope and basin deposits are characterized by debris flows and organic-rich mudstones. Lagoonal and basinal evaporites formed the seal for these carbonate and underlying sandstone reservoirs. The objective of this investigation is to evaluate potential unconventional reservoirs in organic-rich, fine-grained and/or tight mudrocks in slope and basin as well as platform carbonates occurring in this stratigraphic interval. Therefore, a comprehensive study was conducted that included sedimentology, sequence stratigraphy, petrography, and geochemistry. Sequence stratigraphic correlations from shelf to basin are crucial in establishing a framework that allows correlation of potential productive facies in fine-grained, organic-rich basinal siliceous and calcareous mudstones or interfingering tight carbonates and siltstones, ranging from the lagoon, to slope to basin, which might be candidates for forming an unconventional reservoir. Most organic-rich shales worldwide are associated with eustatic transgressions. The basal Zechstein cycles, Z1 and Z2, contain organic-rich siliceous and calcareous mudstones and carbonates that form major transgressive deposits in the basin. Maturities range from over–mature (gas) in the basin to oil-generation on the slope with variable TOC contents. This sequence stratigraphic and sedimentologic evaluation of the transgressive facies in the Z1 and Z2 assesses the potential for shale-gas/oil and hybrid unconventional plays. Potential unconventional reservoirs might be explored in laminated organic-rich mudstones within the oil window along the northern and southern slopes of the basin. Although the Zechstein Z1 and Z2 cycles might have limited shale-gas potential because of low thickness and deep burial depth to be economic at this point, unconventional reservoir opportunities that include hybrid and shale-oil potential are possible in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson RY, Dean WE Jr, Kirkland DW, Snider HJ (1972) Permian castile varved evaporite sequence, West Texas and New Mexico. Geol Soc Am Bull 83–1:59–86

    Article  Google Scholar 

  • Bechtel A, Püttmann W (1997) Paleoceanography of the early Zechstein Sea during Kupferschiefer deposition in the Lower Rhine Basin (Germany): a reappraisal from stable isotope and organic geochemical investigations. Palaeogeogr Palaeoclimatol Palaeoecol 136:331–358

    Article  Google Scholar 

  • Bechtel A, Gratzer A, Püttmann W, Oszczepalski S (2000) Geochemical and isotopic composition of organic matter in the Kupferschiefer of the Polish Zechstein basin: relation to maturity and base metal mineralization. Int J Earth Sci 89:72–89

    Article  Google Scholar 

  • Becker F (2002) Zechsteinkalk und Unterer Werra-Anhydrit (Zechstein 1) in Hessen: Fazies, Sequenzstratigraphie und Diagenese. Geologische Abhandlungen Hessen 109:1–231

    Google Scholar 

  • Becker F, Bechstädt T (2006) Sequence stratigraphy of a carbonate-evaporite succession (Zechstein 1, Hessian Basin, Germany). Sedimentology 53:1083–1120. doi:10.1111/j.1365-3091.2006.00803.x

    Article  Google Scholar 

  • Dyjaczynski K, Gorski M, Mamczur S, Peryt TM (2001) Reefs in the basinal facies of the Zechstein limestone (Upper Permian) of western poland a new gas play. J Pet Geol 24–3:265–285

    Article  Google Scholar 

  • Driskill B, Garbowicz A, Govert AM, Suurmeye N (2012) Reservoir description of the subsurface Eagle Ford Formation, Maverick Basin area, South Texas, USA. In: 74th EAGE conference & exhibition incorporating SPE EUROPEC 2012 Conference and Technical Exhibition - European Association of Geoscientists and Engineers, Society of Petroleum Enginners, 4–7 June 2012

  • Fincham B and Hill D (2011) Bakken–the biggest oil resource in the United States? DOE NETL, E&P Focus. Winter 1:3–17

    Google Scholar 

  • Füchtbauer H (1968) Carbonate sedimentation and subsidence in the Zechstein Basin (northern Germany) Germany. In: Füchtbauer H (ed) Recent developments in carbonate sedimentology in central Europe. Springer, New York, pp 196–204

    Chapter  Google Scholar 

  • Gaupp R, Gast R, Forster C (2000) Late Permian Playa Lake Deposits of the Southern Permian Basin (Central Europe). In: Gierlowski-Kordesch EH, Kelts KR (eds) Lake basins through space and time: AAPG Studies in Geology, vol 46, pp 75–86

  • Gebhardt U, Schneider J, Hoffmann N (1991) Modelle zur Stratigraphie und Beckenentwicklung im Rotliegend der Norddeutschen Senke. Geologisches Jahrbuch Reihe A 127:405–427

    Google Scholar 

  • Gehman HM Jr (1962) Organic matter in limestones. Geochemica et Cosmochimica Acta 2:885–894

    Article  Google Scholar 

  • Geluk MC (2000) Late Permian (Zechstein) carbonate-facies maps, the Netherlands. Geologie en Mijnbouw Netherlands J Geosci 79–1:17–27

    Article  Google Scholar 

  • Geluk MC (2005) Stratigraphy and tectonics of Permo-Triassic basins in the Netherlands and surrounding areas. Dissertation, University Utrecht

  • Geluk MC (2007) Permian. In: Wong ThE, Batjes DAJ, De Jager J (eds) Geology of the Netherlands. Royal Dutch Academy of Arts and Science, Amsterdam, pp 59–79

    Google Scholar 

  • Gerlach R, Knitzschke G (1978) Sedimentationszyklen an der Zechsteinbasis (Z1) im SE Harzvorland und ihre Beziehung zu einigen bergtechnischen Problemen. Zeitschrift der angewandten Geologie 24:214–221

    Google Scholar 

  • Gerling P, Piske J, Rasch H-J, Wehner H (1996a) Paläogeographie, Organofazies und Genese von Kohlenwasserstoffen im Staßfurt-Karbonat Ostdeutschlands-Teil 1 Sedimentationsverlauf und Muttergesteinsausbildung. Erdöl Erdgas Kohle 112–1:13–18

    Google Scholar 

  • Gerling P, Piske J, Rasch H-J, Wehner H (1996b) Paläogeographie, Organofazies und Genese von Kohlenwasserstoffen im Staßfurt-Karbonat Ostdeutschlands-Teil 2 Genese Erdölen und Erdölbegleitgasen. Erdöl Erdgas Kohle 112–4:152–156

    Google Scholar 

  • Hammes U, Hamlin HS, Ewing TE (2011) Geologic analysis of the upper Jurassic Haynesville shale in East Texas and West Louisiana. AAPG Bull 95–10:1643–1666

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus CK, Hastings BS, Kendall CGSTC, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea level changes. An integrated approach. SEPM Special Publication, Tulsa, vol. 42, pp 71–108

  • Hartwig A, Schulz H-M (2010) Applying classical shale gas evaluation concepts to Germany: Part I: The basin and slope deposits of the Stassfurt Carbonate (Ca2, Zechstein, Upper Permian) in Brandenburg. Chemie der Erde–Geochem 70(3):77–91

    Google Scholar 

  • Janson X, Kerans C, Playton T, Clayton J, Winefield P, Burgess P (2012) Stratigraphic models and exploration plays of slope and basin-floor carbonates. Search Discov Art #50637

  • Käding K-C (2000) Die Aller- Ohre, Friesland und Fulda-Folge (vormals Bröckelschiefer-Folge). Kali u. Steinsalz 13:760–770

    Google Scholar 

  • Kaiser R, Nöth S, Ricken W (2003) Sequence stratigraphy with emphasis on platform-related parasequences of the Zechstein 2 carbonate (Ca2)—the northern platform margin of the Southern Permian Basin (NE Germany). Int J Earth Sci 2000(92):54–67

    Google Scholar 

  • Karnin WD, Idiz E, Merkel D, Ruprecht E (1996) The Zechstein Stassfurt carbonate hydrocarbon system of the Thuringian Basin, Germany. Petrol Geosci 2:53–58

    Article  Google Scholar 

  • Kennard JM, James NP (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1:492–503

    Article  Google Scholar 

  • Kirkland DW, Evans R (1981) Source-rock potential of evaporitic environment. AAPG Bull 65–2:181–190

    Google Scholar 

  • Kopp J, Simon A, Göthel M (2006) Die Kupferlagerstätte Spremberg-Graustein in Südbrandenburg. Brandenburg. Geowissenschaftliche Beiträge 13–1(2):117–132

    Google Scholar 

  • Kotarba MJ, Wagner R (2007) Generation potential of the Zechstein Main Dolomite (Ca2) Carbonates in the Gorzo′w Wielkopolski–Miedzycho′ d–Lubiato ′w area, geological and geochemical approach to microbial-algal source rock. Polish Geol Rev 2(1):1025–1036

    Google Scholar 

  • Kotarba MJ, Peryt TM, Koltun YV (2011) Microbial gas system and prospective of hydrocarbon exploration in Miocene strata of the Polish and Ukrainian Carpathian Foredeep. Ann Soc Geol Pol 81:523–548

    Google Scholar 

  • Legler B, Gebhardt U, Schneider JW (2005) Late Permian non-marine–marine transitional profiles in the central Southern Permian Basin, northern Germany. Int J Earth Sci 94:851–862

    Article  Google Scholar 

  • Leyrer K, Strohmenger C, Rockenbauch K, Bechstaedt T (1999) High-resolution forward stratigraphic modeling of Ca2-carbonate platform and off-platform highs (Upper Permian Northern Germany). In: Harff J, Lemke W, Stattegger K (eds) Computerized modeling of sedimentary systems, Springer, Hiedelberg, pp 307–339

  • Lokhorst A (1997) The Northwest European Gas Atlas. Netherlands Institute of Applied Geoscience, Haarlem

    Google Scholar 

  • Loucks RG, Ruppel SC (2007) Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull 91–4:579–601

    Article  Google Scholar 

  • Loucks RG, Reed RM, Ruppel SC, Hammes U (2012) Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull 96–6:1071–1098

    Article  Google Scholar 

  • Malek-Aslani M (1980) Environmental and diagenetic controls of carbonate source rocks. AAPG Bull 64:744–745

    Google Scholar 

  • Menning M, Gast R, Hagdorn H, Käding K-C, Szurlies M, Nitsch E (2005) Die Zeitskala für die höhere Dyas und die Germanische Trias der Stratigraphischen Tabelle von Deutschland 2002. Newsl Stratigr 41:173–210

    Article  Google Scholar 

  • Müller EP, Dubslaff H, Eiserbeck W, Sallum R (1993) Zur Entwicklung der Erdöl-und Erdgasexploration zwischen Ostsee und Thüiringer Wald. In: Müller EP and Porth H (eds) Zur Geologie und Kohlenwasserstofführung des Perm im Ostteil der Norddeutschen Senke: Geologisches Jahrbuch A 131:5–30

  • Mutti M, Weissert HJ (1995) Climate cyclicity and monsoons in the Triassic Pangea: the sedimentological and isotopic record from Ladinian–Carnian carbonate platforms (Southern Alps, Italy). J Sediment Res B 65–3:357–367

    Google Scholar 

  • Paul J (1986a) Environmental analyses of basin and schwellen facies in the lower Zechstein of Germany. In: Harwood GM, Smith DB (eds) The English Zechstein and related topics. Geological Society, London. Special Publications, vol. 22, pp 143–147. doi:10.1144/GSL.SP.1986.022.01.02

  • Paul J (1986b) Stratigraphy of the Lower Werra Cycle (Z1) in West Germany (preliminary results). In: Harwood GM, Smith DB (eds) The English Zechstein and related topics. Geological Society, London. Special Publications, vol. 22, pp 149–156. doi:10.1144/GSL.SP.1986.022.01.02

  • Paul J (1991) Zechstein carbonates–Marine episodes of a hypersaline sea. Zentralblatt für Geologie und Paläontologie Teil 1–4:1029–1045

    Google Scholar 

  • Paul J (2006) Der Kupferschiefer Lithologie. Stratigraphie, Fazies und Metallogenese eines Schwarzschieferes, ZDGG 157–1:57–76

    Google Scholar 

  • Peryt TM (1986) Chronostratigraphical and lithostratigraphical correlations of the Zechstein Limestone of Central Europe. In: Harwood GM, Smith DB (eds) The English Zechstein and related topics. Geological Society, London. Special Publications, vol. 22, pp 201–207. doi:10.1144/GSL.SP.1986.022.01.02

  • Peryt TM, Orti F, Rosell L (1993) Sulfate platform basin transition of the lower Werra Anhydrite (Zechstein, Upper Permian), western Poland: facies and petrography. J Sediment Petrol 63:646–658

    Google Scholar 

  • Peryt TM, Geluk MC, Mathiesen A, Paul J, Smith K (2010) Zechstein. In: Doornenbal JC, Stevenson AG (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v, Houten, pp 123–147

    Google Scholar 

  • Peryt TM, Raczinski P, Peryt D, Chlodek K (2012) Upper Permian reef complex in the basinal facies of the Zechstein Limestone (Ca1), western Poland. Geol J 47–5:537–552. doi:10.1002/gj2440

    Article  Google Scholar 

  • Playton TE, Kerans C (2002) Slope and Toe-of-slope deposits shed from a Late Wolfcampian tectonically active carbonate ramp margin. Gulf Coast Assoc Geol Soc Trans 52:811–820

    Google Scholar 

  • Plein E (1994) Germany. In: Kulke H (ed) Regional petroleum geology of the world, Part I: Europe and Asia. Gebrüder Borntraeger Verlagsbuchhandlung, Stuttgart, pp 139–192

    Google Scholar 

  • Rentzsch J (1965) Die feinstratigraphisch-lithologische Flözlagenparallelisierung im Kupferschiefer am Südrand des norddeutschen Becken. Zeitschrift angewandte Geologie 11:11–14

    Google Scholar 

  • Richter-Bernburg G (1955) Stratigraphische Gliederung des deutschen Zechsteins. Zentralblatt der Deutschen Geologischen Gesellschaft 105:843–854

    Google Scholar 

  • Richter-Bernburg G (1982) Stratogenese des Zechsteinkalkes am Westharz. Zentralblatt der Deutschen Geologischen Gesellschaft 133: 381-40 Richter-Bernburg, G., 1982. Stratogenese des Zechsteinkalkes am Westharz. Z Dtsch Geol Ges 133:381–384

    Google Scholar 

  • Richter-Bernburg G (1985) Zechstein-Anhydrite–Fazies und Genese. Geologisches Jahrbuch, Reihe A-85

  • Roscher M, Schneider JW (2006) Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. Geol Soc Lond Special Publ 265:95–136. doi:10.1144/GSL.SP.2006.265.01.05

    Article  Google Scholar 

  • Roth M (2011) North American shale gas reservoirs: similar, yet so different. AAPG (American Association of Petroleum Geologists) Convention, Calgary. Search Discov Art #80136

  • Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System: new insights from a 3D structural model. Tectonophysics 397:143–165

    Article  Google Scholar 

  • Schulz G, Waldmann R (1968) Ausführliches Schichtenverzeichnis der Bohrung Prerow 1/65. VEB Erdöl und Erdgas Grimmen

  • Slowakiewicz M, Mikolajewski Z (2009) Sequence stratigraphy of the Upper Permian Zechstein Main Dolomite carbonates in Western Poland: a new approach. J Pet Geol 32–3:215–233

    Article  Google Scholar 

  • Slowakiewicz M, Mikolajewski Z (2011) Upper Permian Main Dolomite microbial carbonates as potential source rocks for hydrocarbons (W Poland). Mar Pet Geol 28:1572–1591

    Article  Google Scholar 

  • Smith DB, Harwood GM, Pattison J, Pettigrew TH (1986) A revised nomenclature for Upper Permian strata in eastern England. In: Harwood GM, Smith DB (eds) The English Zechstein and related topics. Geological Society, London. Special Publications, vol. 22, pp 9–12. doi:10.1144/GSL.SP.1986.022.01.02

  • Steinhoff I, Strohmenger C (1996) Zechstein 2 carbonate platform subfacies and grain-type distribution (Upper Permian, Northwest Germany). Facies 35:105–132

    Article  Google Scholar 

  • Strohmenger C, Voigt E, Zimdars J (1993) Einfluß von Eustasie und Paläorelief auf die sedimentologische und diagenetische Entwicklung der Zechstein 2 Karbonate (Ober-Perm, Nordost-Deutschland). Erdöl Erdgas Kohle 109–11:445–450

    Google Scholar 

  • Strohmenger C, Voigt E, Zimdars J (1996) Sequence stratigraphy and cyclic development of Basal Zechstein carbonate-evaporate deposits with emphasis on Zechstein 2 off-platform carbonates (Upper Permian, Northeast Germany). Sed Geol 102:33–54

    Article  Google Scholar 

  • Szurlies M (2013) Late Permian (Zechstein) magnetostratigraphy in Western and Central Europe. In: Gasiewicz A, Slowakiewicz M (eds) Palaeozoic climate cycles: their evolutionary and sedimentological impact. Geological Society, London. Special Publications, vol. 376. doi:10.1144/SP376.7

  • Tucker ME (1991) Sequence stratigraphy of carbonate-evaporate basins: models and application to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. J Geol Soc Lond 148:1019–1036

    Article  Google Scholar 

  • Vail PR, Mitchum RM, Thompson III S (1977) Seismic stratigraphy and global changes of sea level: Part 3. Relative changes of sea level from coastal onlap. In: Payton CW (ed) Seismic stratigraphy applications to hydrocarbon exploration. AAPG Memoir, vol. 26, pp 63–97

  • van Buchem FSP, Huc AY, Pradier B, Stefani MM (2005) The deposition of organic-carbon-rich sediments: models, mechanisms, and consequences. In: Harris NB (ed) Special publication. Society for Sedimentary Geology, vol. 82, pp 191–223

  • van Wees J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Pet Geol 17:43–59

    Article  Google Scholar 

  • Wagner R (ed) (2008) Stratigraphic Chart of Poland. Warsaw

  • Wagner R, Peryt TM (1997) Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. Geol Quart 41:457–474

    Google Scholar 

  • Warren JK (1986) Shallow-water evaporitic environments and their source rock potential. J Sediment Res 56:442–454

    Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell International Petroleum Mij BV, 2nd edn. Geological Society Publishing House, London, pp 1–239

Download references

Acknowledgments

This project was supported by the BMBF with the project GeoEn. The senior author would like to thank for the support she received from the GeoEn program at the University of Potsdam, GeoForschungsZentrum Potsdam and the Mudrock Systems Laboratory at the University of Texas at Austin during her research year at the University of Potsdam. The laboratories of Henry Francis, The University of Kentucky, and Necip Gueven, San Antonio, TX, conducted XRF and XRD analyses, respectively. Geomark laboratories of Houston, TX, conducted the Rock–eval analyses. Thanks to the staff at the University of Potsdam, Christine Günther for assistance with the SEM, Christina Fischer for making excellent thin sections and Antje Musiol for furnishing TOC analyses. The senior author would like to thank Dipl. Geol. Max Zitzmann for support during sampling in sub-zero temperatures in different core storage buildings. We are also indebted to Dr. Karsten Obst und Juliane Brandes at LUNG for support and providing access to cores and data as well as to the President of the LBGR, Dr. Klaus Freytag for his support in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Hammes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammes, U., Krause, M. & Mutti, M. Unconventional reservoir potential of the upper Permian Zechstein Group: a slope to basin sequence stratigraphic and sedimentological evaluation of carbonates and organic-rich mudrocks, Northern Germany. Environ Earth Sci 70, 3797–3816 (2013). https://doi.org/10.1007/s12665-013-2724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2724-1

Keywords

Navigation