Skip to main content

Advertisement

Log in

Electrochemical Performance of Anthocleista djalonensis on Steel-Reinforcement Corrosion in Concrete Immersed in Saline/Marine Simulating-Environment

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, electrochemical techniques were employed to study performance of different concentrations of Anthocleista djalonensis leaf-extract admixtures on the corrosion of steel-reinforcement in concrete immersed in 3.5 % NaCl, for simulating saline/marine environment. Analysed test-results showed that the corrosion rate correlated directly with admixture concentration and inversely with cube of the ratio of standard deviations of corrosion potential and corrosion current. The 0.4167 % A. djalonensis (per weight of cement) exhibited optimal inhibition efficiency, η = 97.43 ± 1.20 %, from analysed experimental data, or 94.80 ± 3.39 %, from predicted correlation model, on steel-reinforcement corrosion in the medium. The other admixture concentrations also exhibited high efficiencies at inhibiting steel-reinforcement corrosion in the chloride contaminated environment. Isotherm fittings of the experimental and predicted performance suggest that they both obeyed the Langmuir adsorption model. Evaluated parameters from the isotherm model indicated favourable adsorption and predominant chemisorption mechanism by this environmentally-friendly inhibitor of steel-reinforcement corrosion in the saline/marine simulating-environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Romano P, Brito P S D, and Rodrigues L, Constr Build Mater 47 (2013) 827.

    Article  Google Scholar 

  2. Singh D D N, and Venugopalan T, Trans Indian Inst Met 66 (2013) 677.

    Article  Google Scholar 

  3. Yohai L, Vázquez M, and Valcarce M B, Electrochim Acta 102 (2013) 88.

    Article  Google Scholar 

  4. Okeniyi J O, Omotosho O A, Ajayi O O, James O O, and Loto C A, Asian J Appl Sci 5 (2012) 132.

    Article  Google Scholar 

  5. Shi X, Xie N, Fortune K, and Gong J, Constr Build Mater 30 (2012) 125.

    Article  Google Scholar 

  6. Omotosho O A, Loto C A, Ajayi O O, and Okeniyi J O, Agric Eng Int 13 (2011) 1.

    Google Scholar 

  7. Zafeiropoulou T, Rakanta E, and Batis G, Prog Org Coat 72 (2011) 175.

    Article  Google Scholar 

  8. Song H -W, and Saraswathy V, Int J Electrochem Sci 2 (2007) 1.

  9. Okeniyi J O, Omotosho O A, Ajayi O O, and Loto C A, Constr Build Mater 50 (2014) 448.

    Article  Google Scholar 

  10. Ernsting R A, Mazzuchi T A, Sarkani S, and Van Erp H R N, Struct Infrastruct Eng 8 (2012) 383.

    Article  Google Scholar 

  11. González J A, Cobo A, González M N, and Otero E, Mater Corros 51 (2000) 97.

    Article  Google Scholar 

  12. Feng L, Yang H, and Wang F, Electrochim Acta 58 (2011) 427.

    Article  Google Scholar 

  13. Fedrizzi L, Azzolini F, and Bonora P L, Cem Concr Res 35 (2005) 551.

    Article  Google Scholar 

  14. Okeniyi J O, Oladele I O, Ambrose I J, Okpala S O, Omoniyi O M, Loto C A, and Popoola A P I, J Cent South Univ 20 (2013) 3697.

    Article  Google Scholar 

  15. Królikowski A, and Kuziak J, Electrochim Acta 56 (2011) 7845.

    Article  Google Scholar 

  16. Shi J J, and Sun W, Cem Concr Compos 45 (2014) 166.

    Article  Google Scholar 

  17. Okeniyi J O, Ambrose I J, Oladele I O, Loto C A, and Popoola P A I, Int J Electrochem Sci 8 (2013) 10758.

    Google Scholar 

  18. Mennucci M M, Banczek E P, Rodrigues P R P, and Costa I, Cem Concr Compos 31 (2009) 418.

    Article  Google Scholar 

  19. Sharma M, Kumar A V R, and Singh N, Trans Indian Inst Met 61 (2008) 251.

    Article  Google Scholar 

  20. Akpan E J, Okokon J E, and Etuk I C, Asian Pac J Trop Dis 2 (2012) 36.

    Article  Google Scholar 

  21. Bassey A S, Okokon J E, Etim E I, Umoh F U, and Bassey E, Indian J Pharmacol 41 (2009) 258.

    Article  Google Scholar 

  22. Adeyemi O O, and Olubomehin O O, Pac J Sci Technol 11 (2010) 455.

    Google Scholar 

  23. Afia L, Salghi R, Zarrouk A, Zarrok H, Bazzi E H, Hammouti B, and Zougagh M, Trans Indian Inst Met 66 (2013) 43.

    Article  Google Scholar 

  24. Hameurlaine S, Gherraf N, Benmnine A, and Zellagui A, J Chem Pharm Res 2 (2010) 819.

    Google Scholar 

  25. Muralidharan S, Saraswathy V, Merlin Nima S P, and Palaniswamy N, Mater Chem Phy 86 (2004) 298.

    Article  Google Scholar 

  26. Okeniyi J O, Omoniyi O M, Okpala S O, Loto C A, and Popoola A P I, Euro J Environ Civ Eng 17 (2013) 398.

    Article  Google Scholar 

  27. ASTM G109-99a, Standard test method for determining the effects of chemical admixtures on the corrosion of embedded steel reinforcement in concrete exposed to chloride environments, ASTM International, West Conshohocken, PA.

  28. Haynie F H, in Corrosion Tests and Standards: Application and Interpretation, Second Edition, (ed) Baboian R, ASTM International, West Conshohocken (2005), p 83.

  29. Broomfield J P, Corrosion of Steel in Concrete: Understanding, Investigation and Repair, Taylor & Francis, New York (2003).

    Google Scholar 

  30. ASTM C876-91 R99, Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete, ASTM International, West Conshohocken, PA.

  31. Eden D A, in Uhlig’s Corrosion Handbook 2nd Edition, (ed) Revie R W, Wiley, New York (2000), p 1227.

  32. Sastri V S, Green Corrosion Inhibitors: Theory and Practice, Wiley, Hoboken, (2011).

    Book  Google Scholar 

  33. Nayak J, and Hebbar K R, Trans Indian Inst Met 61 (2008) 221.

    Article  Google Scholar 

  34. Abosrra L, Ashour A F, and Youseffi M, Constr Build Mater 25 (2011) 3915.

    Article  Google Scholar 

  35. ASTM G16-95 R04, Standard Guide for Applying Statistics to Analysis of Corrosion Data, ASTM International, West Conshohocken PA.

  36. Izquierdo D, Alonso C, Andrade C, and Castellote M, Electrochim Acta 49 (2004) 2731.

    Article  Google Scholar 

  37. Okeniyi J O, Obiajulu U E, Ogunsanwo A O, Odiase N W, and Okeniyi E T, Mitig Adapt Strateg Glob Chang 18 (2013) 325.

    Article  Google Scholar 

  38. Roberge P R, in ASM Handbook, Vol 13A—Corrosion: Fundamentals, Testing, and Protection, (eds) Cramer S D, and Covino Jr B S, ASM International, Materials Park, (2003), p 425.

  39. Ajayi O O, Fagbenle R O, Katende J, and Okeniyi J O, Front Energy 5 (2011) 376.

    Google Scholar 

  40. Ajayi O O, Fagbenle R O, Katende J, Okeniyi J O, and Omotosho O A, Int J Energy Clean Environ 11 (2010) 99.

    Article  Google Scholar 

  41. Reiss R –D, and Thomas M, Statistical Analysis of Extreme Values—3rd Edition, Birkhäuser Verlag AG, Basel, Switzerland (2007).

  42. Kvam P, and Lu J -C, in Springer Handbook of Engineering Statistics, (ed) Pham H, Springer, London (2006), p 49.

  43. Kotz S, and Nadarajah S, Extreme Value Distributions: Theory and Applications, Imperial College Press, London (2000).

    Book  Google Scholar 

  44. Lange K, Numerical Analysis for Statisticians 2nd Edition, Springer Science + Business Media, LLC, New York (2010).

    Book  Google Scholar 

  45. Waldemar D P, Numerical Methods, Algorithms, and Tools in C#, Taylor and Francis Group, LLC, Boca Raton (2010).

    Google Scholar 

  46. Hoffman J D, Numerical Methods for Engineers and Scientists, 2nd Edition, Marcel Dekker, Inc, New York (2001).

    Google Scholar 

  47. Okeniyi J O, and Okeniyi E T, J Stat Comput Simul 82 (2012) 1727.

    Article  Google Scholar 

  48. M.D. Weber, L.M. Leemis, and R.K. Kincaid, J Stat Comput Simul 76 (2006) 195.

    Article  Google Scholar 

  49. Kelly R G, Inman M E, and Hudson J L, in Electrochemical Noise Measurement for Corrosion Applications, ASTM STP 1277, (eds) Kearns J R, Scully J R, Roberge P R, Reichert D L, and Dawson J L, American Society for Testing and Materials (1996), p 101.

  50. Tan Y -J, J Corros Sci Eng 1 (1999) 1.

  51. Khomami M N, Danaee I, and Attar A A, and Peykari M, Trans Indian Inst Met 65 (2012) 303.

    Article  Google Scholar 

  52. Singh A K, Shukla S K, Quraishi M A, and Ebenso E E, J Taiwan Inst Chem Eng 43 (2012) 463.

    Article  Google Scholar 

  53. Bhat J I, and Alva V D P, Trans Indian Inst Met 64 (2011) 377.

    Article  Google Scholar 

  54. Foo K Y, and Hameed B H, Chem Eng J 156 (2010) 2.

    Article  Google Scholar 

  55. Söylev T A, and Richardson M G, Constr Build Mater 22 (2008) 609.

    Article  Google Scholar 

  56. Millard S G, Law D, Bungey J H, and Cairns J, NDT&E Int, 34 (2001) 409.

    Article  Google Scholar 

  57. Coffey R, Dorai-Raj S, O’Flaherty V, Cormican M, and Cummins E, Hum Ecol Risk Assess 19 (2013) 232.

    Article  Google Scholar 

  58. Satapathy A K, Gunasekaran G, Sahoo S C, Amit K, and Rodrigues P V, Corros Sci 51 (2009) 2848.

    Article  Google Scholar 

  59. Coates J, in Encyclopedia of Analytical Chemistry, (ed) Meyers R A, Wiley, Chichester (2000), p 10815.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Olusegun Okeniyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okeniyi, J.O., Loto, C.A. & Popoola, A.P.I. Electrochemical Performance of Anthocleista djalonensis on Steel-Reinforcement Corrosion in Concrete Immersed in Saline/Marine Simulating-Environment. Trans Indian Inst Met 67, 959–969 (2014). https://doi.org/10.1007/s12666-014-0424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0424-5

Keywords

Navigation