Skip to main content
Log in

Properties and Mechanism of Al/St Bimetal Tube Bonding Produced by Cold Spin-Bonding (CSB) Process

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Spin-bonding is a novel tube cladding method for fabrication of bilayer tubes based on flow-forming process. The bimetal Al/St tubular components have extensive application in different industries. In this paper, an Al/St bimetal tube was successfully produced at different thickness reductions from 35 to 65% and mechanical and metallurgical aspects of the joint were investigated. Peeling tests were done to investigate the strength of the bond. The results showed that an increase in the thickness reduction led to a significant increase in the bond strength. Besides, the bonding mechanism between Al as inner tube to St as an outer one resulting from spin-bonding process was investigated. The results showed that an excellent bonding of Al and St tubes could be achieved from this process. The results showed that the bonding process consisted of three stages. First, removal of surface layers resulting in contact between the virgin metals of two bond surfaces and then an unstable bond was formed that stabilized as deformation proceeded. Finally the bond strengthening occurred. The SEM micrographs of the peeled surfaces showed that removing surface films in aluminum and steel in the first stage was based on different mechanisms. Also, SEM back-scatter images of bond interface showed that no intermetallic phases were formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mohebbi M S, and Akbarzadeh A, Int. J. Adv. Manuf. Technol. 54 (2011) 1043.

    Article  Google Scholar 

  2. Li L, Nagai K, and Yin F X, Sci. Technol. Adv. Mater. 9 (2008).

  3. Chen L, Yang Z, Jha B, Xia G, and Stevenson J W, J. Power Sources 152 (2005) 40.

    Article  Google Scholar 

  4. Baghaei M, and Faraji G, J. Adv. Mater. Process. 4 (2016) 21.

    Google Scholar 

  5. Bay N, Bjerregaard H, Petersen S B, and Dos Santos C H, J. Mater. Process. Technol. 45(1–4) (1994) 1.

    Article  Google Scholar 

  6. Kim S H, Kim H W, Euh K, Kang J H, and Cho J H, Mater. Des. 35 (2012) 290.

    Article  Google Scholar 

  7. Li X, Zu G, and Deng Q, in Light Metals 2011. Wiley, New York (2011), p 611.

  8. Faraji G, and Kim H, Mater. Sci. Technol. 33 (2017) 905–923.

    Article  Google Scholar 

  9. Buchner M, Buchmayr B, Bichler C, and Riemelmoser F, AIP Conf. Proc. 907 (2007) 264.

    Article  Google Scholar 

  10. Manesh H D, and Taheri A K, Mater. Des. 24 (2003) 617.

    Article  Google Scholar 

  11. Cline C L, Weld. J. 45 (1966) 481-s. ISSN 0043-2296 CODEN WEJUA3.

  12. Hosseini S A, Hosseini M, and Manesh H D, Mater. Des. 32 (2011) 76.

    Article  Google Scholar 

  13. Bay N, Clemensen C, Juelstorp O, and Wanheim T, CIRP Ann. Manuf. Technol. 34 (1985) 221.

    Article  Google Scholar 

  14. Pan D, Gao K, and Yu J, Mater. Sci. Technol. 5 (1989) 934.

    Article  Google Scholar 

  15. Jamaati R, and Toroghinejad M R, Mater. Sci. Eng. A 527 (2010) 2320.

    Article  Google Scholar 

  16. Mohamed H A, and Washburn J, Weld. J. (Miami); (United States) (1975) p. Medium: X; Size: Pages: vp.

  17. Buchner M, Buchner B, Buchmayr B, Kilian H, and Riemelmoser F, Int. J. Mater. Form. 1 (2008) 1279.

    Article  Google Scholar 

  18. Jindal V, and Srivastava V C, J. Mater. Process. Technol. 195 (2008) 88.

    Article  Google Scholar 

  19. Kang H G, Kim J K, Huh M Y, and Engler O, Mater. Sci. Eng. A 452–453 (2007) 347.

    Article  Google Scholar 

  20. Kawase H, Makimoto M, Takagi K, Ishida Y, and Tanaka T, Trans. Iron Steel Inst. Jpn. 23 (1983) 628.

    Article  Google Scholar 

  21. Manesh H D, and Shahabi H S, J. Alloys Compd. 476 (2009) 292.

    Article  Google Scholar 

  22. Manesh H D, and Taheri A K, J. Alloys Compd. 361 (2003) 138.

    Article  Google Scholar 

  23. Manesh H D, and Taheri A K, Mater. Sci. Technol. 20 (2004) 1064.

    Article  Google Scholar 

  24. Movahedi M, Kokabi A H, and Seyed Reihani S M, Mater. Des. 32 (2011) 3143.

    Article  Google Scholar 

  25. Nezhad M S A, and Ardakani A H, Mater. Des. 30 (2009) 1103.

    Article  Google Scholar 

  26. Chitkara N R, and Aleem A, Int. J. Mech. Sci. 43 (2001) 2857.

    Article  Google Scholar 

  27. Khosravifard A, and Ebrahimi R, Mater. Des. 31 (2010) 493.

    Article  Google Scholar 

  28. Chen Z, Ikeda K, Murakami T, Takeda T, and Xie J X, J. Mater. Process. Technol. 137 (2003) 10.

    Article  Google Scholar 

  29. Sun X J, Tao J, and Guo X Z, Trans. Nonferr. Met. Soc. China 21 (2011) 2175.

    Article  Google Scholar 

  30. Bhanumurthy K, Mater. Sci. Technol. 22 (2006) 321.

    Article  Google Scholar 

  31. Sponseller D L, Timmons G A, and Bakker W T, J. Mater. Eng. Perform. 7 (1998) 227.

    Article  Google Scholar 

  32. Wang X S, Li P N, and Wang R Z, Int. J. Mach. Tools Manuf. 45 (2005) 373.

    Article  Google Scholar 

  33. Mohebbi M S, and Akbarzadeh A, J. Mater. Process. Technol. 210 (2010) 510.

    Article  Google Scholar 

  34. Zhan Z, He Y, Wang D, and Gao W, Surf. Coat. Technol. 201 (2006) 2684.

    Article  Google Scholar 

  35. Reshadi F, Faraji G, Aghdamifar S, Yavari P, and Mashhadi M M, Mater. Sci. Technol. 31 (2015) 1879.

    Article  Google Scholar 

  36. Faraji G, Babaei A, Mashhadi M M, and Abrinia K, Mater. Lett. 77 (2012) 82.

    Article  Google Scholar 

  37. Afrasiab M, Faraji G, Tavakkoli V, Mashhadi M M, and Dehghani K, Trans. Indian Inst. Met. 68 (2015) 873.

    Article  Google Scholar 

  38. Lapovok R, Ng H P, Tomus D, and Estrin Y, Scr. Mater. 66 (2012) 1081.

    Article  Google Scholar 

  39. Movahedi M, Kokabi A, and Reihani S S, Mater. Des. 32 (2011) 3143.

    Article  Google Scholar 

  40. Manesh H D, and Shahabi H S, J. Alloys Compd. 476 (2009) 292.

    Article  Google Scholar 

  41. Jamaati R, and Toroghinejad M R, J. Mater. Eng. Perform. 20 (2011) 191.

    Article  Google Scholar 

  42. Chawla, S.L., Materials selection for corrosion control. Vol. 1. ASM international (1993)

  43. Gur M, and Tirosh J, J. Eng. Ind. 104 (1982) 17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samandari, M., Abrinia, K., Akbarzadeh, A. et al. Properties and Mechanism of Al/St Bimetal Tube Bonding Produced by Cold Spin-Bonding (CSB) Process. Trans Indian Inst Met 70, 2673–2682 (2017). https://doi.org/10.1007/s12666-017-1128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1128-4

Keywords

Navigation