Skip to main content
Log in

Microstructural Studies of Cobalt Based Microwave Clad Developed on Martensitic Stainless Steel (AISI-420)

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

AISI-420 stainless steel is widely used to manufacture hydraulic and gas turbine components. The present work is concerned with microstructural studies of cobalt based clad developed through microwave energy in a microwave applicator. A domestic microwave oven was successfully used to develop clads at 2.45 GHz frequency. The developed clads were evaluated using optical metallography, scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction (XRD) to determine the microstructure, phases and elemental composition of developed surface. The microstructure study reveals that the developed clad shows good metallurgical bond between substrate without any interfacial cracks. XRD study confirms the presence of various complex metal carbides and intermetallics like Cr7C3, Cr3C2, M23C6, Cr2Ni3 which are formed during microwave heating. The average microhardness of the developed clad surface is 807 ± 96 HV, which is 132% higher than that of unclad surface (348 ± 7 HV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carter T, J Eng Fail Analys 12 (2005) 237.

    Article  Google Scholar 

  2. Matthews A, Artley R J, Holiday P, Mater World 6 (1998) 346.

    Google Scholar 

  3. Liu Y Z, Gui Y W, Mater Mech Eng 16 (1992) 1.

    Google Scholar 

  4. Gholipur A, Shamanian M, Ashrafizadeh F, J Alloys Compd 509 (2011) 4905.

    Article  Google Scholar 

  5. Xu Y T, Xia T D, Huang Y L, Rare Metal Mater Eng 38 (2009) 1333.

    Article  Google Scholar 

  6. Chen J, Li X Y, Bell T, Dong H, Wear 264 (2008) 157.

    Article  Google Scholar 

  7. Sidhu T S, Prakash S, Agrawal R D, Surf Coat Technol 201 (2006) 273.

    Article  Google Scholar 

  8. Shepeleva L, Medres B, Kaplan W D, Bamberger M, Weisheit A, Surf Coat Technol 125 (2000) 45.

    Article  Google Scholar 

  9. Kathuria Y P, Surf Coat Technol 132 (2000) 262.

    Article  Google Scholar 

  10. Frenk A, Surf Coat Technol 45 (1991) 435.

    Article  Google Scholar 

  11. Pilloz M, Pelletier J M, Vannes A B, Mater Sci 27 (1992) 1240.

    Article  Google Scholar 

  12. Zhou S, Zeng X, Hu Q, Huang Y, Appl Surf Sci 255 (2008) 1646.

    Article  Google Scholar 

  13. Buang A P, Liu R, Wu X J, Yao M X, J Coat Technol Res 5 (2008) 513.

    Article  Google Scholar 

  14. Hong S, Wu Y P, Gao W W, Wang B, Guo W M, Lin J R, Surf Eng 30 (2014) 53.

    Article  Google Scholar 

  15. Mateos J, Cuetos J M, Fernandez E, Vijande R, Wear 239 (2000) 274.

    Article  Google Scholar 

  16. Cay V V, Ozan S, Gok M S, J Coat Technol Res 8 (2011) 97.

    Article  Google Scholar 

  17. Cheng F T, Lo K H, Man H C, Surf Coat Technol 172 (2003) 308.

    Article  Google Scholar 

  18. Oghbaei M, Mirzaee O, J Alloys Compd 494 (2010) 175.

    Article  Google Scholar 

  19. Satnam S, Gupta D, Vivek J, Sharma A K, Mat Manf Proc 30 (2015) 1.

    Article  Google Scholar 

  20. Radha R M, Sharma A K, Compos A 81 (2016) 78.

    Article  Google Scholar 

  21. Srinath M S, Sharma A K, Kumar P, J Manuf Process 13 (2011) 141.

    Article  Google Scholar 

  22. Badiger R I, Narendranath S, Srinath M S, J. Manuf. Process., 18 (2015) 117.

    Article  Google Scholar 

  23. Gupta D, Sharma A K, Surf Coat Technol 205 (2011) 5147.

    Article  Google Scholar 

  24. Hebbale A M, Srinath M S, Perspect Sci 8 (2016) 257.

    Article  Google Scholar 

  25. Hebbale A M, Srinath M S, Measurement 99 (2017) 98.

    Article  Google Scholar 

  26. Zafar S, Sharma A K, Wear 29–45 (2016) 346.

    Google Scholar 

  27. Sarbjeet K, Vinay S, Gupta D, Hiralal B, Satnam S, J Mater Des Appln. Doi:10.1177/1464420715616139.

  28. Hebbale A M, Srinath M S, J Mater Res Technol 5(4) (2016) 293.

    Article  Google Scholar 

  29. Hebbale A M, Srinath M S, Mater Today Proc 2 (2015) 1414.

    Article  Google Scholar 

  30. Maiek F, Ph.D. Thesis, Cranf Inst Tech 1990.

  31. ASM Metals Handbook: Metall Microstruct 9 (1985) 12.

    Google Scholar 

  32. Thostenson E T, Chou T W, Compos A, 30 (1999) 1055.

    Article  Google Scholar 

  33. Li M X, He Y Z, Sun G X, Appl Surf Sci 230 (2004) 201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit M. Hebbale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebbale, A.M., Srinath, M.S. Microstructural Studies of Cobalt Based Microwave Clad Developed on Martensitic Stainless Steel (AISI-420). Trans Indian Inst Met 71, 737–743 (2018). https://doi.org/10.1007/s12666-017-1206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1206-7

Keywords

Navigation