Skip to main content
Log in

Investigation of Fatigue Strength and Life Prediction for Automotive Safety Components of V-Notched and Un-notched Specimen Part I: Utilization of Waste Materials into Raw Materials

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This paper deals with a design of industrial cast-parts and mainly focuses on fatigue life influenced by organic and inorganic particles at different stress levels over a wide range spectrum, which is evaluated and compared. The fracture mechanisms and fatigue strength of V-notch and un-notch specimens are described. The notch factor and notch sensitivity factors have been studied. Porosity is the main factor for crack growth, and it reduces with the addition of waste particles. This combination receives a lot of attention due to its low cost and environmental safety. The micro-/macro-cracks and fracture surface are revealed using SEM and OM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\( b_{o} \) :

Shear fatigue strength exponent

b :

Axial fatigue strength exponent

c :

Axial fatigue ductility exponent

\( c_{o} \) :

Shear fatigue ductility exponent

E :

Modulus of elasticity

G :

Shear modulus

K :

FS parameter material constant

\( K^{{\prime }} \) :

Cyclic axial strength coefficient

\( K_{f} \) :

Fatigue notch factor

\( K_{t} \) :

Elastic stress concentration factor

\( K_{\text{th}} \) :

Threshold stress intensity factor

L :

Critical distance length

N :

Number of cycles

\( n^{{\prime }} \) :

Cyclic axial strain hardening exponent

\( n_{f} \) :

Cycles of failure

\( N_{f,c} \) :

Loading blocks to failure for composite life estimation

\( N_{f,s} \) :

Loading blocks to failure for stable block life estimation

\( N_{f,t} \) :

Loading blocks to failure for transient deformation life estimation

S :

Stress range

\( \varepsilon_{f}^{'} \) :

Axial fatigue ductility coefficient

\( \gamma_{f}^{'} \) :

Shear fatigue ductility coefficient

\( v_{e} \) :

Elastic Poisson’s ratio

\( v_{p} \) :

Plastic Poisson’s ratio

Wsat :

Saturated weight

Wd :

Dry weight

Ws :

Suspended immersed weight

\( \sigma_{f}^{'} \) :

Axial fatigue strength coefficient

\( \sigma_{{n,{ \hbox{max} }}} \) :

Maximum stress normal to analysis plane

\( \sigma_{u} \) :

Ultimate strength

\( \sigma_{y} \) :

Tensile yield strength

\( \sigma_{y}^{'} \) :

Cyclic yield strength

\( \varSigma D_{s} \) :

Damage sum for stable loading block

\( \varSigma D_{t} \) :

Damage sum for transient loading block

\( \tau_{f}^{'} \) :

Shear fatigue strength coefficient

References

  1. Bodunrin M O, Alaneme K K, and Chown L H, J Mater Res Technol 4 (2015) 434.

    Article  CAS  Google Scholar 

  2. Singh J, and Chauhan A, J Mater Res Technol 5 (2016) 159.

    Article  CAS  Google Scholar 

  3. El-Shabasy A B, Hassan H A, Liu Y, Li D, and Lewandowski J J, Mater Sci Eng A 513 (2009) 202.

    Article  Google Scholar 

  4. Senkov O N, Senkova S V, Scott J M, and Miracle D B, Mater Sci Eng A 393 (2005) 12.

    Article  Google Scholar 

  5. Fan G J, Wang G Y, Choo H, Liaw P K, Park Y S, Han B Q, and Lavernia E J, Scripta Mater 52 (2005) 929.

    Article  CAS  Google Scholar 

  6. Siegfanz S, Giertler A, Michels W, and Krupp U, Mater Sci Eng A 565 (2013) 21.

    Article  CAS  Google Scholar 

  7. Brandl E, Heckenberger U, Holzinger V, and Buchbinder D, Mater Des 34 (2012) 159.

    Article  CAS  Google Scholar 

  8. Subrahmanyam A P, Narsaraju G, and Rao B S, Int J Adv Sci Technol 76 (2015) 1.

    Article  Google Scholar 

  9. Mo D F, Guo-Qiu H, Zheng-Fei H, Zheng-Yu Z, Cheng-Shu C, and Wei-Hua Z, Int J Fatigue 30 (2008) 1843.

    Article  CAS  Google Scholar 

  10. Dwivedi S P, Sharma S, and Mishra R K, J Braz Soc Mech Sci Eng 37 (2015) 57.

    Article  CAS  Google Scholar 

  11. Chandrasekhar S, and Pramada P N, Adsorption 12 (2006) 27.

    Article  CAS  Google Scholar 

  12. Alaneme K K, Akintunde I B, Olubambi P A, and Adewale T M, J Mater Res Technol 2 (2013) 60.

    Article  CAS  Google Scholar 

  13. Paventhan R, Lakshminarayanan P R, and Balasubramanian V, Mater Des 32 (2011) 1888.

    Article  CAS  Google Scholar 

  14. Ciavarella M, D’Antuono P, and Demelio G P, Eng Fract Mech 176 (2017) 178.

    Article  Google Scholar 

  15. Verma B B, Atkinson J D, and Kumar M, Bull Mater Sci 24 (2001) 231.

    Article  CAS  Google Scholar 

  16. Boopathi M M, Arulshri K P, and Iyandurai N, Am J Appl Sci 10 (2013) 219.

    Article  Google Scholar 

  17. Ammar H R, Samuel A M, and Samuel F H, Mater Sci Eng A 473 (2008) 65.

    Article  Google Scholar 

  18. Wang Q G, Metall Mater Trans A 34 (2003) 2887.

    Article  Google Scholar 

  19. Hwang C L, and Huynh T P, Constr Build Mater 101 (2015) 1.

    Article  Google Scholar 

  20. Smith R A, and Miller K J, Int J Mech Sci 20 (1978) 201.

    Article  Google Scholar 

  21. Sonsino C M, and Franz R, Int J Fatigue 100 (2017) 489.

    Article  CAS  Google Scholar 

  22. Hertel O, and Vormwald M, Eng Fract Mech 78 (2011) 1614.

    Article  Google Scholar 

  23. Susmel L, and Taylor D, Int J Fatigue 38 (2012) 7.

    Article  CAS  Google Scholar 

  24. Chandra D, Purbolaksono J, Nukman Y, Liew H L, Ramesh S, and Hassan M A, J Zhejiang Univ Sci A 15 (2014) 873.

    Article  CAS  Google Scholar 

  25. Berto F, Gallo P, and Lazzarin P, Mater Des 63 (2014) 609.

    Article  CAS  Google Scholar 

  26. Gates N R, and Fatemi A, Int J Fatigue 105 (2017) 283.

    Article  CAS  Google Scholar 

  27. Brighenti R, and Carpinteri A, Int J Fatigue 39 (2012) 122.

    Article  Google Scholar 

  28. Gates N, and Fatemi A, Int J Fatigue 91 (2016) 337.

    Article  CAS  Google Scholar 

  29. Fatemi A, and Shamsaei N, Int J Fatigue 33 (2011) 948.

    Article  CAS  Google Scholar 

  30. Aidi B, Philen M K, and Case S W, Compos Part A Appl Sci Manuf 74 (2015) 47.

    Article  CAS  Google Scholar 

  31. Lazzarin P, Campagnolo A, and Berto F, Theor Appl Fract Mech 71 (2014) 21.

    Article  Google Scholar 

  32. Szabó B, Actis R, and Rusk D, Int J Fatigue 92 (2016) 52.

    Article  Google Scholar 

  33. Mittelman B, and Yosibash Z, Eng Fract Mech 141 (2015) 230.

    Article  Google Scholar 

  34. Shoumkova A, and Stoyanova V, J Porous Mater 20 (2013) 249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramanathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, S., Vinod, B. & Anandajothi, M. Investigation of Fatigue Strength and Life Prediction for Automotive Safety Components of V-Notched and Un-notched Specimen Part I: Utilization of Waste Materials into Raw Materials. Trans Indian Inst Met 72, 2631–2647 (2019). https://doi.org/10.1007/s12666-019-01732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01732-x

Keywords

Navigation