Skip to main content
Log in

Glycerol Electrooxidation on Platinum-Tin Electrodeposited Films: Inducing Changes in Surface Composition by Cyclic Voltammetry

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this work, PtSn binary electrodeposits were prepared in three compositions and submitted to successive voltammetric cycles in presence of glycerol (1.0 mol L−1) in acidic media. Catalysts were characterized by energy dispersive X-ray analysis and X-ray photoelectron spectroscopy before and after the cycles being performed, in order to check eventual changes in their compositions during the process. Spectroscopic results show that surface compositions are sensibly richer in Sn than their bulk counterparts. Overall, PtSn catalysts show a poor initial catalytic activity toward glycerol electrooxidation. However, as the cycles succeed, the voltammetric responses increasingly resemble that of Pt, while the oxidation currents increase. Results are rationalized in terms of a continuous enrichment of the surface by Pt at the expenses of a loss of Sn. Moreover, when the electrochemical surface area (ECSA) is estimated by stripping of CO, it becomes evident that electrooxidation currents remain growing, even when the ECSA is decreased, which makes the gain in catalytic activity particularly relevant. Ultimately, from a broader perspective, our results suggest that catalytic surfaces with tunable features (such as surface composition and catalytic response) can be obtained by the application of easily executable electrochemical protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. A. G. Quispe, C. J. R. Coronado, J. A. Carvalho Jr., Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sust. Energ. Rev. 27, 475 (2013)

    Article  CAS  Google Scholar 

  2. P. S. Fernández, M. E. Martins, G. A. Camara, New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochim. Acta 66, 180 (2012)

    Article  Google Scholar 

  3. J. F. Gomes, C. A. Martins, M. J. Giz, G. Tremiliosi-Filho, G. A. Camara, Insights into the adsorption and electro-oxidation of glycerol: self-inhibition and concentration effects. J. Catal. 301, 154 (2013)

    Article  CAS  Google Scholar 

  4. L. Roquet, E. M. Belgsir, J.-M. Léger, C. Lamy, Kinetics and mechanisms of the electrocatalytic oxidation of glycerol as investigated by chromatographic analysis of the reaction products: potential and pH effects. Electrochim. Acta 39, 2387 (1994)

    Article  CAS  Google Scholar 

  5. P. S. Fernández, C. A. Martins, M. E. Martins, G. A. Camara, Electrooxidation of glycerol on platinum nanoparticles: deciphering how the position of each carbon affects the oxidation pathways. Electrochim. Acta 112, 686 (2013)

    Article  Google Scholar 

  6. C. A. Martins, P. S. Fernández, H. E. Troiani, M. E. Martins, G. A. Camara, Ethanol vs. glycerol: understanding the lack of correlation between the oxidation currents and the production of CO2 on Pt nanoparticles. J. Electroanal. Chem. 231, 717–718 (2014)

    Google Scholar 

  7. A. Kowal, M. Li, M. Shao, K. Sasaki, M. B. Vukmirovic, J. Zhang, N. S. Marinkovic, P. Liu, A. I. Frenkel, R. R. Adzic, Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 8, 325 (2009)

    Article  CAS  Google Scholar 

  8. M. Li, D. A. Cullen, K. Sasaki, N. S. Marinkovic, K. More, R. R. Adzic, Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making Ir capable of splitting C−C bond. J. Am. Chem. Soc. 135, 132 (2013)

    Article  CAS  Google Scholar 

  9. C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau, J.-M. Léger, Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts. Electrochim. Acta 49, 3901 (2004)

    Article  CAS  Google Scholar 

  10. F. Colmati, E. Antolini, E. R. Gonzalez, Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J. Power Sources 157, 98 (2006)

    Article  CAS  Google Scholar 

  11. H. Wang, Z. Jusys, R. J. Behm, Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: a quantitative DEMS study. J. Power Sources 154, 351 (2006)

    Article  CAS  Google Scholar 

  12. S. Beyhan, C. Coutanceau, J.-M. Léger, T. W. Napporn, F. Kadrigan, Promising anode candidates for direct ethanol fuel cell: carbon-supported PtSn-based trimetallic catalysts prepared by Bonnemann method. Int. J. Hydrogen Energ. 38, 6830 (2013)

    Article  CAS  Google Scholar 

  13. A. Falase, M. Main, K. Garcia, A. Serov, C. Lau, P. Atanassov, Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts. Electrochim. Acta 66, 295 (2012)

    Article  CAS  Google Scholar 

  14. P. S. Fernández, M. E. Martins, C. A. Martins, G. A. Camara, The electro-oxidation of isotopically labeled glycerol on platinum: new information on C–C bond cleavage and CO2 production. Electrochem. Commun. 15, 14 (2012)

    Article  Google Scholar 

  15. H. J. Kim, S. M. Choi, S. Green, G. A. Tompsett, S. H. Lee, G. W. Huber, W. B. Kim, Highly active and stable PtRuSn/C catalyst for electrooxidation on ethylene glycol and glycerol. Appl. Catal. B-Environ. 101, 366 (2011)

    Article  CAS  Google Scholar 

  16. L. Zheng, L. Xiong, Q. Liu, K. Han, W. Liu, Y. Li, K. Tao, L. Niu, S. Yang, J. Xia, Enhanced electrocatalytic activity for the oxidation of liquid fuels on PtSn nanoparticles. Electrochim. Acta 56, 9860 (2011)

    Article  CAS  Google Scholar 

  17. M. J. Giz, G. A. Camara, G. Maia, The etanol electrooxidation reaction at rough PtRu electrodeposits: a FTIR study. Electrochem. Commun. 11, 1586 (2009)

    Article  CAS  Google Scholar 

  18. E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vázquez-Alvarez, A. C. D. Angelo, F. J. DiSalvo, H. D. Abruña, Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 126, 4043 (2004)

    Article  CAS  Google Scholar 

  19. S. C. Zignani, V. Baglio, J. J. Linares, E. R. Gonzalez, A. S. Aricò, Endurance study of a solid polymer electrolyte direct ethanol fuel cell based on a Pt-Sn anode catalyst. Int. J. Hydrogen Energ. 38, 11576 (2013)

    Article  CAS  Google Scholar 

  20. S. Stevanovic, D. Tripkovic, V. Tripkovic, D. Minic, A. Gavrilovic, A. Tripkovic, V. M. Jovanovic, Insight into the effect of Sn on CO and formic acid oxidation at PtSn catalysts. J. Phys. Chem. C 118, 278 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq (grant nos. 405695/2013-6 and 309176/2015-8), FUNDECT, CAPES, MINCyT, and FINEP for funding this study. G.A.B. Mello is indebted to CAPES for a doctorate fellowship. P.S. Fernández acknowledges CONICET for a post doctorate fellowship. M.E. Martins acknowledges Universidad Nacional de La Plata and CONICET (PIP 112-201101-00917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe A. Camara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mello, G.A.B., Fernández, P.S., Martins, M.E. et al. Glycerol Electrooxidation on Platinum-Tin Electrodeposited Films: Inducing Changes in Surface Composition by Cyclic Voltammetry. Electrocatalysis 8, 1–10 (2017). https://doi.org/10.1007/s12678-016-0332-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0332-z

Keywords

Navigation