Skip to main content
Log in

General theory of interpolation error estimates on anisotropic meshes

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

A Correction to this article was published on 27 March 2023

This article has been updated

Abstract

We propose a general theory of estimating interpolation error for smooth functions in two and three dimensions. In our theory, the error of interpolation is bound in terms of the diameter of a simplex and a geometric parameter. In the two-dimensional case, our geometric parameter is equivalent to the circumradius of a triangle. In the three-dimensional case, our geometric parameter also represents the flatness of a tetrahedron. Through the introduction of the geometric parameter, the error estimates newly obtained can be applied to cases that violate the maximum-angle condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Acosta, G., Apel, Th, Durán, R.G., Lombardi, A.L.: Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra. Math. Comput. 80(273), 141–163 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acosta, G., Durán, R.G.: The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J. Numer. Anal 37, 18–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apel, Th: Anisotropic finite elements: Local estimates and applications. Advances in Numerical Mathematics. Teubner, Stuttgart (1999)

    MATH  Google Scholar 

  4. Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boffi, D., Brezzi, F., Demkowicz, L.F., Durén, R.G., Falk, R.S., Fortin, M.: Mixed Finite Elements, Compatibility Conditions, and Applications : Lectures Given at the C.I.M.E. Summer School, Italy, 2006. Lecture Notes in Mathematics 1939, Springer, (2008)

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Verlag, New York (2013)

    Book  MATH  Google Scholar 

  7. Braess, D.: Finite Elements Theory, Fast Solvers, and Application in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  8. Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55, 2227–2233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer Verlag, New York (2008)

    Book  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic problems. SIAM, New York (2002)

    Book  MATH  Google Scholar 

  11. Dekel, S., Leviatan, D.: The Bramble-Hilbert lemma for convex domains. SIAM J. Math. Anal. 35(5), 1203–1212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer Verlag, New York (2004)

    Book  MATH  Google Scholar 

  13. Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120, 79–88 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition. Jpn. J. Ind. Appl. Math. 31, 193–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles. Appl. Math. 5, 485–499 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kobayashi, K., Tsuchiya, T.: Error analysis of Crouzeix-Raviart and Raviart-Thomas finite element methods. Jpn. J. Ind. Appl. Math. 35, 1191–1211 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kobayashi, K., Tsuchiya, T.: Error analysis of lagrange interpolation on tetrahedrons. J. Approx. Theory, arXiv:1606.03918 (2020)

  18. Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math. Praha 36, 223–232 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Křížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29, 513–520 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, X., Kikuchi, F.: Explicit estimation of error constants appearing in non-conforming linear triangular finite element method. Appl. Math. 63, 381–397 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rannacher, R.: Numerik 2: Numerik partieller Differentialgleichungen. Heidelberg University Publishing, Heidelberg (2017). (in German)

    Google Scholar 

  22. Verfürth, R.: A note on polynomial approximation in Sobolev spaces. Math. Model. Numer. Anal. 33, 715–719 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP16H03950. We would like to thank the anonymous referee for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ishizaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishizaka, H., Kobayashi, K. & Tsuchiya, T. General theory of interpolation error estimates on anisotropic meshes. Japan J. Indust. Appl. Math. 38, 163–191 (2021). https://doi.org/10.1007/s13160-020-00433-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-020-00433-z

Keywords

Mathematics Subject Classification

Navigation