Skip to main content

Advertisement

Log in

Dermal bioactives from lactobacilli and bifidobacteria

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Lactobacilli and bifidobacteria are the most common genera of probiotics with documented potentials on gut health. Recent studies have suggested that such potentials can be extended beyond gut well-being, such as that of dermal health. Our present study aimed to evaluate the production of bioactives that are essential for skin defense, such as lipoteichoic acid, peptidoglycan, hyaluronic acid, sphingomyelinase, lactic acid, acetic acid, and diacetyl, from lactobacilli and bifidobacteria grown in milk. All strains studied showed the presence of LTA in the cell wall fraction, with higher amounts from Lactobacillus rhamnosus FTDC 8313 and Bifidobacterium longum BL 8643 than other strains studied. Meanwhile, all strains studied showed equal concentrations of cell wall peptidoglycan. Our results showed that all strains studied were capable of producing hyaluronic acid, with higher production by lactobacilli than bifidobacteria. Production of diacetyl was more prevalent from strains of lactobacilli, while bifidobacteria produced higher amounts of acetic acid. Strains of lactobacilli and bifidobacteria studied also produced acid and neutral sphingomyelinase, an enzyme that generates ceramides and subsequent development of physical barriers in the stratum corneum. Our current findings show that bioactive and inhibitive extracts are produced from the fermentation of lactobacilli and bifidobacteria in milk, with potentials for dermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carvalho ALU, Oliveira FHPC, Lima Ramos Mariano R, Gouveia ER, Souto-Maior AM (2010) Growth, sporulation and production of bioactive compounds by Bacillus subtilis R14. Braz Arch Biol Technol 53:643–652. doi:10.1590/S1516-89132010000300020

    Article  Google Scholar 

  • Chong BF, Blank LM, Mclaughlin R, Nielsen LK (2005) Microbial hyaluronic acid production. Appl Microbiol Biotechnol 66:341–351. doi:10.1007/s00253-004-1774-4

    Article  CAS  PubMed  Google Scholar 

  • Christensen MD, Pederson CS (1958) Factors affecting diacetyl production by lactic acid bacteria. Appl Microbiol 6:319–322

    CAS  PubMed  Google Scholar 

  • Cooney MJ, Goh LT, Lee PL, Johns MR (2008) Structured model-based analysis and control of the hyaluronic acid fermentation by Streptococcus zooepidemicus: physiological implications of glucose and complex-nitrogen-limited growth. Biotechnol Progr 15:898–910. doi:10.1021/bp990078n

    Article  Google Scholar 

  • Di Marzio L, Cinque B, De Simone C, Cifone MG (1999) Effect of the lactic acid bacterium Streptococcus thermophilus on ceramide levels in human keratinocytes in vitro and stratum corneum in vivo. J Investig Dermatol 113:98–106. doi:10.1046/j.1523-1747.1999.00633.x

    Article  PubMed  Google Scholar 

  • Fedtke I, Mader D, Kohler T, Moll H, Nicholson G, Biswas R, Henseler K, Gotz F, Zahringer U, Peschel A (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091

    Google Scholar 

  • Jang KS, Baik JE, Han SH, Chung DK, Kim BG (2011) Multispectrometric analyses of lipoteichoic acids isolated from Lactobacillus plantarum. Biochem Biophys Res Comm 407:823–830. doi:10.1016/j.bbrc.2011.03.107

    Article  CAS  PubMed  Google Scholar 

  • Jensen JM, Forl M, Winoto-Morbach S, Seite S, Schunck M, Proksch E, Schutze S (2005) Acid and neutral sphingomyelinase, ceramide synthase, and acid ceramidase activities in cutaneous aging. Exp Dermatol 14:609–618. doi:10.1111/j.0906-6705.2005.00342.x

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Terao T (1997) Hyaluronic acid-specific regulation of cytokines by human uterine fibroblasts. Am J Physiol Cell Physiol 273:C1151–C1159

    CAS  Google Scholar 

  • Koncept Analytics (2010) Global probiotics market: trends and opportunities. Ireland: Research and Markets. http://www.researchandmarkets.com/research/2e0e00/global_probiotics. Accessed 21 July 2010

  • Lanciotti R, Patrignani F, Bagnolini F, Guerzoni ME, Gardini F (2003) Evaluation of diacetyl antimicrobial activity against Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. Food Microbiol 20:537–543. doi:10.1016/S0740-0020(02)00159-4

    Article  CAS  Google Scholar 

  • Landis SJ (2008) Chronic wound infection and antimicrobial use. Adv Skin Wound Care 21:531–540. doi:10.1097/01.ASW.0000323578.87700.a5

    Article  PubMed  Google Scholar 

  • Litzinger S, Duckworth A, Nitzsche K, Risinger C, Wittmann V, Mayer C (2010) Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by β-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase. J Bateriol 192:3132–3143. doi:10.1128/JB.01256-09

    Article  CAS  Google Scholar 

  • Machado MC, López CS, Heras H, Rivas EA (2004) Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys 422:61–70. doi:10.1016/j.abb.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  • Magni C, de Mendoza D, Konings WN, Lolkema JS (1999) Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. J Bacteriol 181:1451–1457

    CAS  PubMed  Google Scholar 

  • Matsubara C, Kajiwara M, Akasaka H, Haze S (1991) Carbon-13 nuclear magnetic resonance studies on the biosynthesis of hyaluronic acid. Chem Pharm Bull 39:2446–2448

    Article  CAS  Google Scholar 

  • Nagoba B, Wadher B, Kulkarni P, Kolhe S (2008) Acetic acid treatment of pseudomonal wound infections. Eur J Gen Med 5:104–106. http://www.bioline.org.br/request?gm08019. Accessed 9 March 2012

    Google Scholar 

  • Nell MJ, Tjabringa GS, Vonk MJ, Hiemstra PS, Grote JJ (2004) Bacterial products increase expression of the human cathelicidin hCAP-18/LL-37 in cultured human sinus epithelial cells. FEMS Immunol Med Microbiol 42:225–231. doi:10.1016/j.femsim.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  • Niebuhr M, Baumert K, Werfel T (2010) TLR-2-mediated cytokine and chemokine secretion in human keratinocytes. Exp Dermatol 19:873–877. doi:10.1111/j.1600-0625.2010.01140.x

    Article  CAS  PubMed  Google Scholar 

  • Østlie HM, Helland MH, Narvhu JA (2003) Growth and metabolism of selected strains of probiotic bacteria in milk. Int J Food Microbiol 87:17–27. doi:10.1016/S0168-1605(03)00044-8

    Article  PubMed  Google Scholar 

  • Palframan RJ, Gibson GR, Rastall RA (2003) Carbohydrate preferences of bifidobacterium species isolated from the human gut. Curr Iss Intest Microbiol 4:71–75

    CAS  Google Scholar 

  • Parche S, Beleut M, Rezzonico E, Jacobs D, Arigoni F, Titgemeyer F, Jankovic I (2006) Lactose-over-glucose preference in Bifidobacterium longum NCC2705:glcP, encoding a glucose transporter, is subject to lactose repression. J Bacteriol 188:1260–1265. doi:10.1128/JB.188.4.1260-1265.2006

    Article  CAS  PubMed  Google Scholar 

  • Pasricha A, Bhalla P, Sharma KB (1979) Evaluation of lactic acid as an antibacterial agent. Indian J Dermatol Venereal Leprol 45:159–161. http://www.ijdvl.com/article.asp?issn=0378-6323;year=1979;volume=45;issue=2;spage=149;epage=161;aulast=Pasricha;type=0. Accessed 11 March 2012

    Google Scholar 

  • Price RD, Berry MG, Navsaria HA (2007) Hyaluronic acid: the scientific and clinical evidence. J Plast Reconstr Aesthetic Surg 60:1110–1119. doi:10.1016/j.bjps.2007.03.005

    Article  Google Scholar 

  • Quintans NG, Blancato V, Repizo G, Magni C, López P (2008) Citrate metabolism and aroma compound production in lactic acid bacteria. In: Mayo B, López P, Pérez-Martínez G (eds) Molecular aspects of lactic acid bacteria for traditional and new applications. Research Signpost, Kerala, pp 65–88

    Google Scholar 

  • Rawlings AV, Davies A, Carlomusto M, Pillai S, Zhang K, Verdeio P, Feinberg C, Nguyen L, Chandar P (1996) Effect of lactic acid isomers on keratinocyte ceramide synthesis, stratum corneum lipid levels and stratum corneum barrier function. Arch Dermatol Res 288:383–390. doi:10.1007/BF02507107

    Article  CAS  PubMed  Google Scholar 

  • Reith J, Berking A, Mayer C (2011) Characterization of an N-acetylmuramic acid/N-acetylglucosamine kinase of Clostridium acetobutylicum. J Bacteriol 193:5386–5392. doi:10.1128/JB.05514-11

    Article  CAS  PubMed  Google Scholar 

  • Sullivan M, Schnittger SF, Mammone T, Goyarts EC (2009) Skin treatment method with lactobacillus extract. US Patent 7,510,734 B2, 31 March 2009

  • Suskovic J, Kos B, Beganovic J, Pavunc AL, Habjanic K, Matosic S (2010) Antimicrobial activity- The most important property of probiotic and starter lactic acid bacteria. Food Technol Biotechnol 48:296–307

    CAS  Google Scholar 

  • Tham CSC, Peh KK, Bhat R, Liong MT (2011) Probiotic properties of bifidobacteria and lactobacilli isolated from local dairy products. Ann Microb. doi:10.1007/s13213-011-0349-8

  • Vandergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12:221–238. doi:10.1111/j.1574-6976.1993.tb00020.x

    Article  Google Scholar 

  • van Langevelde P, van Dissel JT, Ravensbergen E, Appelmelk BJ, Schrijver IA, Groeneveld PHP (1998) Antibiotic-induced release of lipoteichoic acid and peptidoglycan from Staphylococcus aureus: quantitative measurements and biological reactivities. Antimicrob Agents Chemother 42:3073–3078

    PubMed  Google Scholar 

  • Wang Z, MacLeod DT, Di Nardo A (2012) Commensal bacteria lipoteichoic acid increases skin mast cell antimicrobial activity against vaccinia viruses. J Immunol. doi:10.4049/jimmunol.1200471

  • Yang S, Tamai R, Akashi S, Takeuchi O, Akira S, Sugawara S, Takada H (2001) Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture. Infect Immun 69:2045–2053. doi:10.1128/IAI.69.4.2045-2053.2001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the FRGS grant (203/PTEKIND/6711239) provided by Ministry of Higher Education, Malaysia and USM Fellowship provided by Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Tze Liong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lew, LC., Gan, CY. & Liong, MT. Dermal bioactives from lactobacilli and bifidobacteria. Ann Microbiol 63, 1047–1055 (2013). https://doi.org/10.1007/s13213-012-0561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0561-1

Keywords

Navigation