Skip to main content

Advertisement

Log in

Endophytic and pathogenic fungi of developing cranberry ovaries from flower to mature fruit: diversity and succession

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Culturable fungal population diversity and succession was investigated in developing cranberry ovaries of fruit rot-resistant and rot-susceptible cranberry selections, from flower through mature fruit. Fungi were recovered in culture from 1185 of 1338 ovary tissues collected from June to September, yielding 2255 isolates that represented 42 morphotaxa. During the season, species richness varied from 2 to 17 and 2 to 18 in rot-resistant and rot-susceptible selections, respectively, increasing from wk1 to wk10 and then gradually declining to wk14. Shannon-Wiener diversity index varied from 0.27 to 2.32 in rot-resistant and 0.18 to 2.38 in rot-susceptible, and Pielou’s evenness index varied from 0.11 to 0.63 and 0.06 to 0.64 in rot-resistant and rot-susceptible selections, respectively, confirming that diversity of fungi in developing ovaries was similar among rot-resistant and rot-susceptible selections, but varied among sampling time points. Principal component analysis grouped samples collected at the same sampling time point together regardless of rot susceptibility of the selections, and detected the predominant fungal species associated with each stage of development. Successional changes were observed in populations of endophytic, pathogenic and saprophytic fungi throughout the season as ovaries matured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Andrews JH, Hecht EP, Bashirian S (1982) Association between the fungus Acremonium curvulum and Eurasian water milfoil, Myriophyllum spicatum. Can J Bot 60:1216–1221

    Article  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Baayen RP, Bonants PJM, Verkley G, Carroll GC, van der Aa HA, de Weerdt M, van Brouwershaven IR, Schutte GC, Maccheroni W Jr, Glienke de Blanco C, Azevedo JL (2002) Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92:464–477

    Article  PubMed  CAS  Google Scholar 

  • Bain HF (1926) Cranberry disease investigations on the Pacific Coast. Dep Bull 1434. USDA, Washington, DC

  • Bayman P (2007) Fungal Endophytes. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships. The Mycota IV, 2nd edn. Springer, Berlin, pp 213–227

    Google Scholar 

  • Boone DM (1995a) Early rot. In: Caruso FL, Ramsdell DC (eds) Compendium of blueberry and cranberry diseases. The APS Press, St. Paul, pp 35–36

    Google Scholar 

  • Boone DM (1995b) Blotch rot. In: Caruso FL, Ramsdell DC (eds) Compendium of blueberry and cranberry diseases. The APS Press, St. Paul, p 32

    Google Scholar 

  • Bown D (2001) New encyclopedia of herbs and their uses. Herb Society of America—DK Publishing, Inc, New York

    Google Scholar 

  • Brown KJ (1982) Physalospora vaccinii and its effect on cranberries in Wisconsin. M.S. Thesis. University of Wisconsin, Madison, WI

  • Brown KB, Hyde KD, Guest DI (1998) Preliminary studies on endophytic fungal communities of Musa acuminata species complex in Hong Kong and Australia. Fungal Divers 1:27–51

    Google Scholar 

  • Carris LM (1988) Chalara vaccinii sp. nov., a Vaccinium endophyte. Mycologia 80:875–879

    Article  Google Scholar 

  • Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Caruso FL, Ramsdell DC (1995) Compendium of blueberry and cranberry diseases. The APS Press, St. Paul

    Google Scholar 

  • Caruso FL, Bristow PR, Oudemans PV (2000) Cranberries: the most intriguing native North American fruit. APSnet Features Online http://www.apsnet.org/publications/apsnetfeatures/Pages/Cranberries.aspx, doi:10.1094/APSnetFeature-2000-1100

  • Duan JX, Wu WP, Liu XZ (2007) Reinstatement of Coleonaema for Coleophoma oleae and notes on Coleophoma. Fungal Divers 26:187–204

    Google Scholar 

  • Ellis MB (1971) Dematiaceous hyphomycetes. CAB International, Wallingford

    Google Scholar 

  • Ellis MB (1976) More dematiaceous hyphomycetes. CAB International, Wallingford

    Google Scholar 

  • Ellis MB, Ellis JP (1997) Microfungi on land plants: an identification handbook. Richmond Publishing Co., Ltd, Slough

    Google Scholar 

  • Farr DF, Rossman AY (2011) Fungal databases. USDA-ARS, Systematic Mycology and Microbiology Laboratory, Beltsville, MD. http://nt.ars-grin.gov/fungaldatabases/

  • Farr DF, Bills GF, Chamuris GP, Rossman AY (1989) Fungi on plants and plant products in the United States. APS Press, St. Paul, pp 179–182

    Google Scholar 

  • Farr DF, Castlebury LA, Rossman AY (2002) Morphological and molecular characterization of Phomopsis vaccinii and additional isolates of Phomopsis from blueberry and cranberry in the eastern United States. Mycologia 94:494–504

    Article  PubMed  CAS  Google Scholar 

  • Fisher PJ, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120:137–143

    Article  Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75

    Article  PubMed  CAS  Google Scholar 

  • Friend RJ (1968) Incidence and pathogenicity of fungi found on cranberry in Wisconsin. Ph.D. Thesis. University of Wisconsin, Madison, WI

  • Glienke C, Pereira OL, Stringari D, Fabris J, Kava-Cordeiro V, Galli-Terasawa L, Cunnington J, Shivas RG, Groenewald JZ, Crous PW (2011) Endophytic and pathogenic Phyllosticta species, with reference to those associated with Citrus Black Spot. Persoonia 26:47–56

    Article  PubMed  CAS  Google Scholar 

  • González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42

    Article  Google Scholar 

  • Gourley CO, Harrison KA (1969) Observations on cranberry fruit rots in Nova Scotia, 1945–55. Can Plant Dis Surv 49:22–26

    Google Scholar 

  • Halsted BD (1889) Some fungus diseases of the cranberry. Bull 64, New Jersey Agricultural Collage Experiment Station, New Brunswick, NJ

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol Electron 4:4. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Hancock JF (1995) Introduction: the taxonomy, botany, and culture of Vaccinium. In: Caruso FL, Ramsdell DC (eds) Compendium of blueberry and cranberry diseases. The APS Press, St. Paul, pp 1–5

    Google Scholar 

  • Hata K, Futai K, Tsuda M (1998) Seasonal and needle age-dependent changes of the endophytic mycobiota in Pinus thunbergii and Pinus densiflora needles. Can J Bot 76:245–250

    Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Cai L, McKenzie EHC, Yang YL, Zhang JZ, Prihastuti H (2009) Colletotrichum: a catalogue of confusion. Fungal Divers 39:1–17

    Google Scholar 

  • Hyde KD, Chomnunti P, Crous PW, Groenewald JZ, Damm U, Ko Ko TW, Shivas RG, Summerell BA, Tan YP (2010) A case for re-inventory of Australia’s plant pathogens. Persoonia 25:50–60

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713

    Article  CAS  Google Scholar 

  • Jeffers SN (1991) Seasonal incidence of fungi in symptomless cranberry leaves and fruit treated with fungicides during bloom. Phytopathology 81:636–644

    Article  CAS  Google Scholar 

  • Johnson-Cicalese J, Vorsa N, Polashock J (2009) Breeding for fruit rot resistance in Vaccinium macrocarpon. In: Hummer KE, Strik BC, Finn CE (eds) Proc 9th Int Vaccinium Symp. Acta Hortic 810:191–195

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Keates SE (1993) Endophytic fungi associated with Vaccinium macrocarpon Ait. (cranberry) in Washington State and the effect of fungicide treatments on their occurrence. M.S. Thesis. Washington State University, Pullman, WA

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Ko Ko TW, Stephenson SL, Bahkali AH, Hyde KD (2011) From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Divers 50:113–120

    Article  Google Scholar 

  • Kulik MM (1984) Symptomless infection, persistence, amd production of pycnidia in host and non-host plants by Phomopsis batatae, Phomopsis phaseoli, and Phomopsis sojae, and the taxonomic implications. Mycologia 76:274–291

    Article  Google Scholar 

  • Kusek CC (1995a) Viscid rot. In: Caruso FL, Ramsdell DC (eds) Compendium of blueberry and cranberry diseases. The APS Press, St. Paul, p 42

    Google Scholar 

  • Kusek CC (1995b) Ripe rot. In: Caruso FL, Ramsdell DC (eds) Compendium of blueberry and cranberry diseases. The APS Press, St. Paul, p 43

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Developments in environmental modeling, 20. Elsevier Science BV, Amsterdam, The Netherlands

  • Limber DP (1955) Studies in the genus Sporonema. Mycologia 47:389–402

    Article  Google Scholar 

  • Lu G, Cannon PF, Reid A, Simmons CM (2004) Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana. Mycol Res 108:53–63

    Article  PubMed  CAS  Google Scholar 

  • Ludwig JA, Reynolds JF (1988) Statistical ecology: a premier on methods and computing. A Wiley-Interscience Publication, John Wiley & Sons, Inc, New York, NY

  • Luteyn J (2004) Ericaceae (Heath family). In: Smith N, Mori SA, Henderson A, Stevenson DW, Heald SV (eds) Flowering plants of the neotropics. Princeton University Press, Princeton, pp 140–143

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Google Scholar 

  • Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali AH, Hyde KD (2011) Pestalotiopsis—morphology, phylogeny, biochemistry and diversity. Fungal Divers 50:167–187

    Article  Google Scholar 

  • McGarigal K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Book  Google Scholar 

  • McManus PS, Caldwell RW, Voland RP, Best VM (2003) Evaluation of sampling strategies for determining incidence of cranberry fruit rot and fruit rot fungi. Plant Dis 87:585–590

    Article  Google Scholar 

  • Millar CS (1981) Infection processes on conifer needles. In: Blakeman JP (ed) Microbial ecology of the phylloplane. Academic, New York, pp 185–209

    Google Scholar 

  • Murali TS, Suryanarayanan TS, Geeta R (2006) Endophytic Phomopsis species: host range and implications for diversity estimates. Can J Microbiol 52:673–680

    Article  PubMed  CAS  Google Scholar 

  • Murali TS, Suryanarayanan TS, Venkatesan G (2007) Fungal endophyte communities in two tropical forests of southern India: diversity and host affiliation. Mycol Progr 6:191–199

    Article  Google Scholar 

  • Okane I, Nakagiri A, Ito T (1998) Endophytic fungi in leaves of ericaceous plants. Can J Bot 76:657–663

    Google Scholar 

  • Okane I, Nakagiri A, Ito T (2001) Identity of Guignardia sp. inhabiting ericaceous plants. Can J Bot 79:101–109

    Google Scholar 

  • Okane I, Lumyong S, Nakagiri A, Ito T (2003) Extensive host range of an endophytic fungus, Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Mycoscience 44:353–363

    Article  Google Scholar 

  • Olatinwo RO, Hanson EJ, Schilder AMC (2003) A first assessment of the cranberry fruit rot complex in Michigan. Plant Dis 87:550–556

    Article  Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    Article  PubMed  CAS  Google Scholar 

  • Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100:387–391

    Article  PubMed  Google Scholar 

  • Oudemans PV, Caruso FL, Stretch AW (1998) Cranberry fruit rot in the northeast: a complex disease. Plant Dis 82:1176–1184

    Article  Google Scholar 

  • Pandey AK, Reddy MS, Suryanarayanan TS (2003) ITS-RLFP and ITS sequence analysis of a foliar endophytic Phyllosticta from different tropical trees. Mycol Res 107:439–444

    Article  PubMed  CAS  Google Scholar 

  • Peres NA, Timmer LW, Adaskaveg JE, Correll JC (2005) Lifestyles of Colletotrichum acutatum. Plant Dis 89:784–796

    Article  Google Scholar 

  • Petrini O (1984) Endophytic fungi in British Ericaceae: a preliminary study. Trans Br Mycol Soc 83:510–512

    Article  Google Scholar 

  • Petrini O (1985) Wirtsspezifität endophytischer Pilze bei einheimischen Ericaceae. Bot Helv 95:213–238

    Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, Van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, New York, pp 175–187

    Google Scholar 

  • Petrini LE, Petrini O, Laflamme G (1989) Recovery of endophytes of Abies balsama from needles and galls of Paradiplosis tumifex. Phytoprotection 70:97–103

    Google Scholar 

  • Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140

    Google Scholar 

  • Photita W, Taylor PWJ, Ford R, Hyde KD, Lumyong S (2005) Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers 18:117–133

    Google Scholar 

  • Pielou EC (1966) Species-diversity and pattern-diversity in the study of ecological succession. J Theor Biol 10:370–383

    Article  PubMed  CAS  Google Scholar 

  • Polashock JJ, Caruso FL, Oudemans PV, McManus PS, Crouch JA (2009) The North American cranberry fruit rot fungal community: a systematic overview using morphological and phylogenetic affinities. Plant Pathol 58:1116–1127

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  PubMed  CAS  Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    Article  PubMed  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  • Prusky D, Ben-Arie R, Guelfat-Reich S (1981) Etiology of black spot disease caused by Alternaria alternata in persimmon fruits. Phytopathology 71:1124–1128

    Article  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Rayner MC (1929) The biology of fungus infection in the genus Vaccinium. Ann Bot 43:55–70

    Google Scholar 

  • Rigby B, Dana MN (1972) Flower opening, pollen shedding, stigma receptivity and pollen tube growth in the cranberry. HortScience 7:84–85

    Google Scholar 

  • Roberts RH, Struckmeyer BE (1942) Growth and fruiting of the cranberry. Proc Am Soc Hort Sci 40:373–379

    Google Scholar 

  • Romero A, Carrió G, Rico-Gray V (2001) Fungal latent pathogens and endophytes from leaves of Parthenium hysterophorus (Asteraceae). Fungal Divers 7:81–87

    Google Scholar 

  • Sauer M, Lu P, Sangari R, Kennedy S, Polishook J, Bills G, An Z (2002) Estimating polyketide metabolic potential among nonsporulating fungal endophytes of Vaccinium macrocarpon. Mycol Res 106:460–470

    Article  CAS  Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust H-J (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Schulz B, Römmert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  • Shannon CE, Weaver W (1971) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shear CL (1907a) Cranberry diseases. Bull 110, USDA Bureau of Plant Industry, Washington, DC

  • Shear CL (1907b) New species of fungi. Bull Torrey Bot Club 34:305–317

    Article  Google Scholar 

  • Shear CL, Stevens NE, Bain HF (1931) Fungus diseases of the cultivated cranberry. Technical Bull 258, USDA, Washington, DC

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Bio Rev 21:75–89

    Article  Google Scholar 

  • Sinclair JB, Cerkauskas RF (1996) Latent infection vs. endophytic colonization by fungi. In: Redlin SC, Carries LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St Paul, pp 3–29

    Google Scholar 

  • Stevens NE (1917) Temperatures of the cranberry regions of the United States in relation to the growth of certain fungi. J Agric Res 11:521–529

    Google Scholar 

  • Stevens NE (1924) Notes on cranberry fungi in Massachusetts. Phytopathology 14:101–107

    Google Scholar 

  • Stiles CM, Oudemans PV (1999) Distribution of cranberry fruit-rotting fungi in New Jersey and evidence for nonspecific host resistance. Phytopathology 89:218–225

    Article  PubMed  CAS  Google Scholar 

  • Stone JK, Polishook JD, White JF Jr (2004) Endophytic fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier Academic Press, New York, pp 241–270

    Google Scholar 

  • Stretch AW (1995) Bitter rot. In: Caruso FL, Ramsdell DC (eds) Compendium of blueberry and cranberry diseases. The APS Press, St. Paul, pp 29–30

    Google Scholar 

  • Sullivan R, Bergen MS, Patel R, Bills GF, Alderman SC, Spatafora JW, White JF Jr (2001) Features and phylogenetic status of an enigmatic clavicipitalean fungus Neoclaviceps monostipa gen. et sp. nov. Mycologia 93:90–99

    Article  Google Scholar 

  • Sun X, Gou LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95

    Article  Google Scholar 

  • Sutton BC (1980) The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Tejesvi MV, Kajula M, Mattila S, Pirittilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Hermaja. Fungal Divers 47:97–107

    Article  Google Scholar 

  • Udayanga D, Liu X, McKenzie EHC, Chukeatirote E, Bahkali AHA, Hyde KD (2011) The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers 50:189–225

    Article  Google Scholar 

  • Unterseher M, Schnittler M (2009) Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)—Different cultivation techniques influence fungal biodiversity assessment. Mycol Res 113:645–654

    Article  PubMed  Google Scholar 

  • Unterseher M, Reiher A, Finstermeier K, Otto P, Morawetz W (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Progr 6:201–212

    Article  Google Scholar 

  • Vander Kloet SP (1983) The taxonomy of Vaccinium section Oxycoccus. Rhodora 85:1–43

    Google Scholar 

  • Verhoeff K (1974) Latent infections by fungi. Annu Rev Phytopathol 12:99–110

    Article  CAS  Google Scholar 

  • Weidemann GJ (1995) Botryosphaeria fruit rot and berry speckle. In: Caruso FL, Ramsdell DC (eds) Compendium of blueberry and cranberry diseases. The APS Press, St. Paul, pp 32–33

    Google Scholar 

  • Weidemann GJ, Boone DM (1983) Incident and pathogenicity of Phyllosticta vaccinii and Botryosphaeria vaccinii on cranberry. Plant Dis 67:1090–1093

    Article  Google Scholar 

  • Weidemann GJ, Boone DM (1984) Development of latent infections on cranberry leaves inoculated with Botryosphaeria vaccinii. Phytopathology 74:1041–1043

    Article  Google Scholar 

  • Weidemann GJ, Boone DM, Burdsall HH Jr (1982) Taxonomy of Phyllosticta vaccinii (Coelomycetes) and a new name for the true anamorph of Botryosphaeria vaccinii (Dothideales, Dothioraceae). Mycologia 74:59–65

    Article  Google Scholar 

  • Wikee S, Udayanga D, Crous PW, Chukeatirote E, McKenzie EHC, Bahkali AH, Dai D, Hyde KD (2011) Phyllosticta—an overview of current status of species recognition. Fungal Divers 51:43–61

    Article  Google Scholar 

  • Wu W, Sutton BC, Gange AC (1996) Coleophoma fusiformis sp.nov. from leaves of Rhododendron, with notes on the genus Coleophoma. Mycol Res 100:943–947

    Article  Google Scholar 

  • Zar JH (2010) Biostatistical analysis, 5th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Zuckerman BM (1958) Relative importance of cranberry fruit rot fungi during the storage and harvest seasons in Massachusetts, 1956–1957. Plant Dis Rep 42:1214–1221

    Google Scholar 

Download references

Acknowledgments

We thank Peter J. Morin for advice and insightful discussions, Pedro W. Crous, Johannes Z. Groenewald, Raymond Sullivan for help in preliminary identification of Metulocladosporiella sp., and Ari Novy for technical assistance. This research was supported by the United States Department of Agriculture Specialty Crop Research Initiative (SCRI) 2008-51180-04878 (NV) grant, New Jersey Agricultural Experiment Station and Ocean Spray Cranberries, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Tadych.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PDF 130 kb)

Supplementary Table 2

(PDF 195 kb)

Supplementary Table 3

(PDF 63.9 kb)

Supplementary Table 4

(PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadych, M., Bergen, M.S., Johnson-Cicalese, J. et al. Endophytic and pathogenic fungi of developing cranberry ovaries from flower to mature fruit: diversity and succession. Fungal Diversity 54, 101–116 (2012). https://doi.org/10.1007/s13225-012-0160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-012-0160-2

Keywords

Navigation