Skip to main content
Log in

Human hair keratin-based biofilm for potent application to periodontal tissue regeneration

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

An Erratum to this article was published on 24 August 2015

Abstract

For the treatment of periodontitis, local delivery of antibiotics and their sustained release are preferable to enhance microbial susceptibility and to reduce possible side effects occurrence in systemic drug delivery. To address these issues, antibiotic loaded polymeric matrices implantable into periodontal pocket have been commercially used in dentistry and oral medicine. Recently, keratin has been drawing attention as a natural polymer for its ability to mediate cell behavior with minor or no immunogenicity enabling further process towards autologous implantation. In this study, human hair keratin was extracted with a cocktail of reducing agents, and antibiotic eluting keratin-based biofilms were fabricated. Physicochemical analysis and release test showed proper physical stability and sustained release of the loaded antibiotics. In addition, the released antibiotic suppressed the growth of various types of oral bacteria including porphyromonas gingivalis. Cellular interaction studies showed that human oral epithelial cell, human gingival fibroblast and periodontal ligament cells proliferated and guided well on biofilms. This study propose that antibiotic eluting keratin-based biofilms are provisional device for the treatment of chronic periodontitis offering advantages such as local controlled drug delivery and biocompatibility, and human hair keratin is able to be a good biomaterial for the potent applications to tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Vos, A. D. Flaxman, M. Naghavi, R. Lozano, C. Michaud, M. Ezzati, K. Shibuya, J. A. Salomon, S. Abdalla, and V. Aboyans, Lancet, 380, 2163 (2013).

    Article  Google Scholar 

  2. A. W. Smith, Adv. Drug Deliv. Rev., 57, 1539 (2005).

    Article  CAS  Google Scholar 

  3. Y.-X. Wang, J. L. Robertson, W. B. Spillman Jr, R. O. Claus, Pharm. Res., 21, 1362 (2004).

    Article  CAS  Google Scholar 

  4. R. J. Siegle, J. P. McCoy, W. Schade, and N. A. Swanson, Arch Dermatol., 120, 183 (1984).

    Article  CAS  Google Scholar 

  5. P. K. Chu, J. Chen, L. Wang, and N. Huang, Mater. Sci. Eng. R: Rep., 36, 143 (2002).

    Article  Google Scholar 

  6. S. F. Badylak and T. W. Gilbert, Semin. Immunol., 20, 109 (2008).

    Article  CAS  Google Scholar 

  7. S. Reichl, Biomaterials, 30, 6854 (2009).

    Article  CAS  Google Scholar 

  8. R. Windoffer, M. Beil, T. M. Magin, and R. E. Leube, J. Cell Biol., 194, 669 (2011).

    Article  CAS  Google Scholar 

  9. L. Langbein, H. Yoshida, S. Praetzel-Wunder, D. A. Parry, and J. Schweizer, J. Invest. Dermatol., 130, 55 (2009).

    Article  Google Scholar 

  10. H. W. Heid, I. Moll, and W. W. Franke, Differentiation, 37, 137 (1988).

    Article  CAS  Google Scholar 

  11. L. Alonso and E. Fuchs, J. Cell Sci., 119, 391 (2006).

    Article  CAS  Google Scholar 

  12. J. R. Richter, R. C. de Guzman, and M. E. Van Dyke, Biomaterials, 32, 7555 (2011).

    Article  CAS  Google Scholar 

  13. S. Reichl, M. Borrelli, and G. Geerling, Biomaterials, 32, 3375 (2011).

    Article  CAS  Google Scholar 

  14. C. Yamauchi, W. Okazaki, T. Yoshida, and A. Karasawa, Biol. Pharm. Bull., 31, 994 (2008).

    Article  CAS  Google Scholar 

  15. H. Lee, K. Noh, S. C. Lee, I.-K. Kwon, D.-W. Han, I.-S. Lee, and Y.-S. Hwang, Tissue Eng. Regen. Med., 11, 255 (2014).

    Article  CAS  Google Scholar 

  16. A. Nakamura, M. Arimoto, K. Takeuchi, and T. Fujii, Biol. Pharm. Bull., 25, 569 (2002).

    Article  CAS  Google Scholar 

  17. P. M. Schrooyen, P. J. Dijkstra, R. C. Oberthür, A. Bantjes, and J. Feijen, J. Agric. Food Chem., 48, 4326 (2000).

    Article  CAS  Google Scholar 

  18. S. Reichl and C. C. Müller-Goymann, Eur. J. Pharm. Biopharm. 78, 432 (2011).

    Article  Google Scholar 

  19. J. M. Saul, M. D. Ellenburg, R. C. de Guzman, and M. V. Dyke, J. Biomed. Mater. Res. A, 98, 544 (2011).

    Article  Google Scholar 

  20. N. C. F. C. L. Standards, Performance Standards for Antimicrobial Disk Susceptibility Tests, National Committee for Clinical Laboratory Standards, 2003.

    Google Scholar 

  21. S. Paswan, Studying the Arsenic Absorption by Keratin Protein Extracted from Human Hair, Bachelor of Technology Thesis, National Institute of Technology Rourkela, 2012.

    Google Scholar 

  22. G. Holzwarth and P. Doty, J. Am. Chem. Soc., 87, 218 (1965).

    Article  CAS  Google Scholar 

  23. N. J. Greenfield, Nat. Protoc., 1, 2876 (2007).

    Article  Google Scholar 

  24. X.-C. Yin, F.-Y. Li, Y.-F. He, Y. Wang, and R.-M. Wang, Biomater. Sci., 1, 528 (2013).

    Article  CAS  Google Scholar 

  25. F. Ikkai and S. Naito, Biomacromolecules, 3, 482 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojae Bae.

Additional information

These authors equally contributed to this work.

The image from this article is used as the cover image of the Volume 23, Issue 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Hwang, YS., Lee, HS. et al. Human hair keratin-based biofilm for potent application to periodontal tissue regeneration. Macromol. Res. 23, 300–308 (2015). https://doi.org/10.1007/s13233-015-3036-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3036-y

Keywords

Navigation