Skip to main content
Log in

A pH/Temperature-Sensitive s-IPN Based on Poly(vinyl alcohol), Poly(vinyl methyl ether-alt-maleic acid) and Poly(vinyl methyl ether) Prepared by Autoclaving

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A novel semi-interpenetrating polymer network (s-IPN) based on the entrapment of a thermosensitive polymer, the poly(vinyl methyl ether) (PVME), within a crosslinked 3D structure of poly(vinyl alcohol) (PVA) and poly(vinyl methyl ether-alt-maleic acid) (COP) was synthesized by an autoclaving process. The preparation method avoids the use of toxic crosslinkers and allows the simultaneous sterilization of material. The PVA/COP/PVME hydrogel were characterized by Fourier transform infrared spectroscopy, thermal techniques, swelling kinetic measurements, scanning electron microscopy, and rheological analysis. The entrapment of PVME within the hydrated polymer framework significantly modified its transition temperature at pH 7.4 and pH 3 conditions. The swelling kinetics of the s-IPN were dependent on pH (7.4, 3 and 1), and temperature (25 and 37 °C). The interpenetrated polymer chains reduced the internal pore sizes of crosslinked network without altering its elastic, solid-like behavior. The loading and in vitro release of 5-fluorouracil, a chemotherapeutic agent, from hydrogel systems were studied at different temperature and pH values. The hydrogels showed a sustained drug release up to 5 h at 37 °C, in different pH media. The s-IPN exhibited a promising performance for a range of biomedical applications, in particular, for the controlled drug delivery in response to the pH and temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. McKinnon, T. E. Brown, K. A. Kyburz, E. Kiyotake, and K. S. Anseth, Biomacromolecules, 15, 2808 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C. Zhao, Z. Ma, and X. X. Zhu, Prog. Polym. Sci., 90, 269 (2019).

    Article  CAS  Google Scholar 

  3. X. Dong, C. Wei, J. Liang, T. Liu, D. Kong, and F. Lv, Colloids Surfaces B Biointerfaces, 154, 253 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. X. Zhang, L. Meng, Q. Lu, Z. Fei, and P. J. Dyson, Biomaterials, 30, 6041 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, and H. M. Akil, Mater. Sci. Eng. C, 57, 414 (2015).

    Article  CAS  Google Scholar 

  6. A. Ahmed, C. Bonner, and T. A. Desai, J. Control. Release, 81, 291 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. K. S. Anseth, C. N. Bowman, and L. Brannon-Peppas, Biomaterials, 17, 1647 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. C. Al Sabbagh, J. Seguin, E. Agapova, D. Kramerich, V. Boudy, and N. Mignet, Eur. J. Pharm. Biopharm., 157, 154 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. A. Gandhi, A. Paul, S. O. Sen, and K. K. Sen, Asian J. Pharm. Sci., 10, 99 (2015).

    Article  Google Scholar 

  10. T. Schmidt, C. Querner, and K. F. Arndt, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 208, 331 (2003).

    Article  CAS  Google Scholar 

  11. M. Pastorczak, M. Kozanecki, and J. Ulanski, Polymer (Guildf)., 50, 4535 (2009).

    Article  CAS  Google Scholar 

  12. K. F. Arndt, T. Schmidt, R. Reichelt, Polymer (Guildf)., 42, 6785 (2001).

    Article  CAS  Google Scholar 

  13. R. Kishi, H. Kihara, T. Miura, and H. Ichijo, Radiat. Phys. Chem., 72, 679 (2005).

    Article  CAS  Google Scholar 

  14. E. Kokufuta, O. Ogane, H. Ichijo, S. Watanabe, and O. Hirasa, J. Chem. Soc. Chem. Commun., 5, 416 (1992).

    Article  Google Scholar 

  15. O. Hirasa, Y. Morishita, R. Onomura, H. Ichijo, and A. Yamauchi, Kobunshi Ronbunshu, 46, 661 (1989).

    Article  CAS  Google Scholar 

  16. N. C. Sharma, H. J. Galustians, J. Qaquish, A. Galustians, K. N. Rustogi, M. E. Petrone, P. Chaknis, L. Garcia, A. R. Volpe, and H. M. Proskin, J. Clin. Dent., 10, 131 (1999).

    CAS  PubMed  Google Scholar 

  17. E. Larrañeta, M. Henry, N. J. Irwin, J. Trotter, A. A. Perminova, and R. F. Donnelly, Carbohydr. Polym., 181, 1194 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. K. Yoncheva, E. Lizarraga, and J. M. Irache, Eur. J. Pharm. Sci., 24, 411 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. B. Luppi, T. Cerchiara, F. Bigucci, A. M. Di Pietra, I. Orienti, and V. Zecchi, Drug Deliv. J. Deliv. Target. Ther. Agents, 10, 239 (2003).

    CAS  Google Scholar 

  20. E. Caló, J. M. S. D. Barros, M. Fernández-Gutiérrez, J. San Román, L. Ballamy, and V. V. Khutoryanskiy, RSC Adv., 6, 55211 (2016).

    Article  CAS  Google Scholar 

  21. C. Rohatgi, N. Dutta, and N. Choudhury, Nanomaterials, 5, 398 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. X. Wu, W. Li, K. Chen, D. Zhang, L. Xu, and X. Yang, Mater. Today Commun., 21, 100702 (2019).

    Article  CAS  Google Scholar 

  23. J. M. Gohil, A. Bhattacharya, and P. Ray, J. Polym. Res., 13, 161 (2006).

    Article  CAS  Google Scholar 

  24. H. S. Mansur, C. M. Sadahira, A. N. Souza, and A. A. P. Mansur, Mater. Sci. Eng. C, 28, 539 (2008).

    Article  CAS  Google Scholar 

  25. T. R. Raj Singh, P. A. McCarron, A. D. Woolfson, and R. F. Donnelly, Eur. Polym. J., 45, 1239 (2009).

    Article  CAS  Google Scholar 

  26. O. V. Khutoryanskaya, V. V. Khutoryanskiy, and R. A. Pethrick, Macromol. Chem. Phys., 206, 1497 (2005).

    Article  CAS  Google Scholar 

  27. A. Concellón, T. Liang, A. P. H. J. Schenning, J. L. Serrano, P. Romero, and M. Marcos, J. Mater. Chem. C, 6, 1000 (2018).

    Article  Google Scholar 

  28. A. A. Bhutto, D. Vesely, B. J. Gabrys, Polymer (Guildf)., 44, 6627 (2003).

    Article  CAS  Google Scholar 

  29. F. J. Lu, E. Benedetti, and S. L. Hsu, Macromolecules, 16, 1525 (1983).

    Article  CAS  Google Scholar 

  30. M. Sclavons, P. Franquinet, V. Carlier, G. Verfaillie, I. Fallais, R. Legras, M. Laurent, and F. C. Thyrion, Polymer (Guildf)., 41, 1989 (2000).

    Article  CAS  Google Scholar 

  31. E. Larrañeta, L. Barturen, M. Ervine, and R. F. Donnelly, Int. J. Pharm., 538, 147 (2018).

    Article  PubMed  CAS  Google Scholar 

  32. J. E. Barrera, J. A. Rodríguez, J. E. Perilla, and N. A. Algecira, Ing. Investig., 27, 100 (2007).

    CAS  Google Scholar 

  33. N. Othman and H. I. Nur Azleen Azahari, Malaysian Polym. J., 6, 147 (2011).

    Google Scholar 

  34. A. K. Sonker, K. Rathore, R. K. Nagarale, and V. Verma, J. Polym. Environ., 26, 1782 (2018).

    Article  CAS  Google Scholar 

  35. K. H. Chung, C. S. Wu, and E. G. Malawer, J. Appl. Polym. Sci., 41, 793 (1990).

    Article  CAS  Google Scholar 

  36. H. Mazi, G. Kibarer, E. Emregül, and Z. M. O. Rzaev, Macromol. Biosci., 6, 311 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. H. Mazi and A. L. I. Gulpinar, J. Chem. Sci., 126, 239 (2014).

    Article  CAS  Google Scholar 

  38. F. Xu, H. Padhy, M. Al-dossary, G. Zhang, A. R. Behzad, U. Stingl, and A. Rothenberger, J. Mater. Chem. B Mater. Biol. Med., 2, 6406 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. N. N. Ferreira, L. M. B. Ferreira, V. M. O. Cardoso, F. I. Boni, A. L. R. Souza, and M. P. D. Gremião, Eur. Polym. J., 99, 117 (2018).

    Article  CAS  Google Scholar 

  40. D. Qureshi, S. K. Nayak, S. Maji, A. Anis, D. Kim, and K. Pal, Eur. Polym. J., 120, 109220 (2019).

    Article  CAS  Google Scholar 

  41. Y. Guo, Y. Peng, and P. Wu, J. Mol. Struct., 875, 486 (2008).

    Article  CAS  Google Scholar 

  42. E. S. Gil and S. M. Hudson, Prog. Polym. Sci., 29, 1173 (2004).

    Article  CAS  Google Scholar 

  43. F. Meeussen, Y. Bauwens, R. Moerkerke, E. Nies, and H. Berghmans, Polymer (Guildf)., 41, 3737 (2000).

    Article  CAS  Google Scholar 

  44. Y. Maeda, H. Mochiduki, H. Yamamoto, Y. Nishimura, and I. Ikeda, Langmuir, 19, 10357 (2003).

    Article  CAS  Google Scholar 

  45. Y. Zong, Y. Wei, and S. E. Morgan, ACS Symp. Ser., 1148, 301 (2013).

    Article  CAS  Google Scholar 

  46. X. Yin, A. S. Hoffman, and P. S. Stayton, Biomacromolecules, 7, 1381 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. L. Song, J. Lin, Y. He, J. Li, J. Sheng, S. Jiang, and D. Huang, J. Polym. Sci. Part B Polym. Phys., 57, 323 (2019).

    Article  CAS  Google Scholar 

  48. E. Akar and A. Altinis, Carbohydr. Polym., 90, 1634 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. H. Feil, H. Bae, and J. Feijen, Macromolecules, 25, 5528 (1992).

    Article  CAS  Google Scholar 

  50. J. L. Benítez, C. Lárez Velásquez, and B. Rojas de Gáscue, Rev. Latinoam. Metaly. Mater., 35, 242 (2015).

    Google Scholar 

  51. C. B. Shah and S. M. Barnett, J. Appl. Polym. Sci., 45, 293 (1992).

    Article  CAS  Google Scholar 

  52. M. S. Silverstein, Polymer(Guildf)., 207, 122929 (2020).

    CAS  Google Scholar 

  53. X. Vargas, N. Afanasjeva, M. Alvarez, P. Marchal, and L. Choplin, Dyna, 75, 191 (2008).

    Google Scholar 

  54. Y. Chang, L. Xiao, and T. Qian, J. Appl. Polym. Sci., 113, 4000 (2009).

    Google Scholar 

  55. G. P. Andrews, T. P. Laverty, and D. S. Jones, J. Pharm. Sci., 104, 4329 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. H. Yi, H. J. Cho, S. M. Cho, D. G. Lee, A. M. Abd El-Aty, S. J. Yoon, G. W. Bae, K. Nho, B. Kim, C. H. Lee, J. S. Kim, M. G. Bartlett, and H. C. Shin, BMC Cancer, 10, 1 (2010).

    Article  Google Scholar 

  57. M. Li, Z. Liang, X. Sun, T. Gong, and Z. Zhang, PLoS One, 9, e112888 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. J. Wielińska, A. Nowacki, and B. Liberek, Molecules, 24, 1 (2019).

    Article  CAS  Google Scholar 

  59. Z. Ma, R. Ma, X. Wang, J. Gao, Y. Zheng, and Z. Sun, Eur. Polym. J., 118, 64 (2019).

    Article  CAS  Google Scholar 

  60. M. S. Amini-Fazl, R. Mohammadi, and K. Kheiri, Int. J. Biol. Macromol., 132, 506 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. R. S. Tiğli Aydin and M. Pulat, J. Nanomater., 2012, 1 (2012).

    Article  CAS  Google Scholar 

  62. R. A. A. Z. Ibrahim, F. S. A. Suhail, and H. K. Al-Hakeim, Nano Biomed. Eng., 10, 224 (2018).

    CAS  Google Scholar 

  63. A. I. Khalaf, D. E. El Nashar, F. M. Helaly, and A. Soliman, Polym. Bull., 76, 3555 (2019).

    Article  CAS  Google Scholar 

  64. J. Siepmann and N. A. Peppas, Adv. Drug Deliv. Rev., 48, 139 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa del Castillo-Castro.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This research was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, grant number A1-S-26204, Ciencia Básica 2017–2018. Karla García and Andya Ramírez acknowledge CONACYT for their scholarships during this study. The authors thank Dra. Sarai Rochín of the Nanomaterials Laboratory of the UNISON by the rheological measurements. A special thanks to Dra. Irela Santos and Dra. Silvia Burruel by her kindly support for thermal and SEM characterizations, respectively.

The image from this article is used as the cover image of the Volume 30, Issue 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Verdugo, K.F., Ramírez-Irigoyen, A.J., Castillo-Ortega, M. et al. A pH/Temperature-Sensitive s-IPN Based on Poly(vinyl alcohol), Poly(vinyl methyl ether-alt-maleic acid) and Poly(vinyl methyl ether) Prepared by Autoclaving. Macromol. Res. 30, 353–364 (2022). https://doi.org/10.1007/s13233-022-0044-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0044-6

Keywords

Navigation