Skip to main content
Log in

Computational Modelling of In Vitro Set-Ups for Peripheral Self-Expanding Nitinol Stents: The Importance of Stent–Wall Interaction in the Assessment of the Fatigue Resistance

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Although the number of fractured stents in the femoro-popliteal district was largely reduced using second-generation devices, remarkable differences still exist among various products. In vitro testing offers a valid tool to comparatively assess the risk of fatigue fracture of different devices. However, there are no standardized methodologies for bench testing under the complex biomechanical environment of the femoro-popliteal district. A computational approach was used in the present study to investigate the fatigue testing conditions adopted in the in vitro studies to increase the understanding of the Nitinol stents fatigue behaviour, by focusing on the role of the stent–wall interaction. The finite element method was used coupled to fatigue analysis to investigate the behaviour of commercial devices during in vitro tests. Two peripheral stents were chosen for the analyses for which conflicting results are found in literature. Stent models were subjected to axial compression and bending either alone in the fully-expanded configuration or after their deployment in a silicone tube resembling the presence of the artery. Results indicate that the two testing conditions investigated produce quite a different fatigue behaviour both in terms of constant-life diagram and strain distribution in the stents. In particular, the results highlight that oversizing influence the fatigue behaviour of the devices with an effect on both the mean and amplitude values of the strain induced in the stents. Comparison with a fatigue limit typical for Nitinol indicates good agreement with the experimental results and confirms the validity of the adopted methodology. Stent oversizing plays an important role in determining the fatigue response of the devices and cannot be disregarded to assess the fatigue performance of Nitinol stents during in vitro tests. Moreover, the different behaviour found for the two stent models suggests that a careful stent design can improve the fatigue performance of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Allie, D. E., C. J. Hebert, and C. M. Walker. Nitinol stent fracture in the SFA. Endovasc. Today 3(7):22–34, 2004.

    Google Scholar 

  2. Arthurs, Z. M., P. D. Bishop, L. E. Feiten, M. J. Eagleton, D. G. Clair, and V. S. Kashyap. Evaluation of peripheral atherosclerosis: a comparative analysis of angiography and intravascular ultrasound imaging. J. Vasc. Surg. 51(4):933–938, 2010.

    Article  Google Scholar 

  3. Bosiers, M., G. Torsello, H. M. Gissler, J. Ruef, S. Müller-Hülsbeck, T. Jahnke, P. Peeters, K. Daenens, J. Lammer, H. Schroë, K. Mathias, R. Koppensteiner, F. Vermassen, and D. Scheinert. Nitinol stent implantation in long superficial femoral artery lesions: 12-month results of the DURABILITY I study. J. Endovasc. Ther. 16(3):261–269, 2009.

    Article  Google Scholar 

  4. Cheng, C. P., N. M. Wilson, R. L. Hallett, R. J. Herfkens, and C. A. Taylor. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J. Vasc. Interv. Radiol. 17(6):979–987, 2006.

    Article  Google Scholar 

  5. Dick, P., H. Wallner, S. Sabeti, C. Loewe, W. Mlekusch, J. Lammer, et al. Balloon angioplasty versus stenting with Nitinol stents in intermediate length superficial femoral artery lesions. Catheter. Cardiovasc. Interv. 74:1090–1095, 2009.

    Article  Google Scholar 

  6. Duda, S. H., M. Bosiers, J. Lammer, D. Scheinert, T. Zeller, V. Oliva, A. Tielbeek, J. Anderson, B. Wiesinger, G. Tepe, A. Lansky, M. R. Jaff, C. Mudde, H. Tielemans, and J. P. Beregi. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: long-term results from the SIROCCO trial. J. Endovasc. Ther. 13(6):701–710, 2006.

    Article  Google Scholar 

  7. Ganguly, A., J. Simons, A. Schneider, B. Keck, N. R. Bennett, R. J. Herfkens, and R. Fahrig. In-vivo imaging of femoral artery nitinol stents for deformation analysis. J. Vasc. Interv. Radiol. 22(2):244–249, 2011.

    Article  Google Scholar 

  8. Gibbs, J. M., S. P. Costantino, and J. Benenati. Treating the diseased superficial femoral artery. Tech. Vasc. Interv. Radiol. 13:37–42, 2010.

    Article  Google Scholar 

  9. Harvey, S. M. Nitinol stent fatigue in peripheral artery subjected to pulsatile and articulation loading. J. Mater. Eng. Perform. 20(4–5):697–705, 2011.

    Article  Google Scholar 

  10. Iida, O., M. Uematsu, Y. Soga, K. Hirano, K. Suzuki, H. Yokoi, T. Muramatsu, N. Inoue, S. Nanto, and S. Nagata. Timing of the restenosis following nitinol stenting in the superficial femoral artery and the factors associated with early and late restenoses. Catheter. Cardiovasc. Interv. 78(4):611–617, 2011.

    Article  Google Scholar 

  11. Klein, A. J., S. J. Chen, J. C. Messenger, A. R. Hansgen, M. E. Plomondon, J. D. Carroll, and I. P. Casserly. Quantitative assessment of the conformational change in the femoropopliteal artery with the leg movement. Catheter. Cardiovasc. Interv. 74(5):787–798, 2009.

    Article  Google Scholar 

  12. Kleinstreuer, C., Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber. Computational mechanics of Nitinol stent grafts. J. Biomech. 41:2370–2378, 2008.

    Article  Google Scholar 

  13. Krankenberg, H., M. Schlüter, H. Steinkamp, K. Bürgelin, D. Scheinert, K. L. Schulte, E. Minar, P. Peeters, M. Bosiers, G. Tepe, B. Reimers, F. Mahler, T. Tübler, and T. Zeller. Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length: the femoral artery stenting trial (FAST). Circulation 116(3):285–292, 2007.

    Article  Google Scholar 

  14. Laird, J. R., B. T. Katzen, D. Scheinert, J. Lammer, J. Carpenter, M. Buchbinder, R. Dave, G. Ansel, A. Lansky, E. Cristea, T. J. Collins, J. Goldstein, and M. R. Jaff. Nitinol stent implantation versus balloon angioplasty for lesions in the superficial femoral artery and proximal popliteal artery. Twelve-month results from the RESILIENT randomized trial. Circ. Cardiovasc. Interv. 3(3):267–276, 2010.

    Google Scholar 

  15. Lownie, S. P., D. M. Pelz, D. H. Lee, S. Men, I. Gulka, and P. Kalapos. Efficacy of treatment of severe carotid bifurcation stenosis by using self-expanding stents without deliberate use of angioplasty balloons. Am. J. Neuroradiol. 26(5):1241–1248, 2005.

    Google Scholar 

  16. Mewissen, M. W. Primary nitinol stenting for femoropopliteal disease. J. Endovasc. Ther. 16(2):1163–1181, 2009.

    Google Scholar 

  17. Müller-Hülsbeck, S., P. J. Schäfer, N. Charalambous, H. Yagi, M. Heller, and T. Jahnke. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J. Endovasc. Ther. 17(6):767–776, 2010.

    Article  Google Scholar 

  18. Nikanorov, A., H. B. Smouse, K. Osman, M. Bialas, S. Shrivastava, and L. B. Schwartz. Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions. J. Vasc. Surg. 48(2):435–440, 2008.

    Article  Google Scholar 

  19. Pelton, A. R. Nitinol fatigue: a review of microstructures and mechanism. J. Mater. Eng. Perform. 20(4–5):613–617, 2011.

    Article  Google Scholar 

  20. Pelton, A. R., X. Y. Gong, and T. Duerig. Fatigue testing of diamond-shaped specimens. Proceedings of the International Conference on Shape Memory and Superelastic Technologies. SMST 2003, Pacific Grove, CA, pp. 199–204.

  21. Pelton, A. R., V. Schroeder, M. R. Mitchell, X. Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.

    Article  Google Scholar 

  22. Petrini, L., W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati. Fatigue behavior characterization of nitinol for peripheral stents. Funct. Mater. Lett. 2012. doi:10.1142/S1793604712500129.

    Google Scholar 

  23. Saguner, A. M., T. Traupe, L. Räber, N. Hess, Y. Banz, A. R. Saguner, N. Diehm, and O. M. Hess. Oversizing and restenosis with self-expanding stents in iliofemoral arteries. Cardiovasc. Interv. Radiol. 35(4):906–913, 2012.

    Article  Google Scholar 

  24. Saidane, K., S. Polizu, and L. Yahia. Accelerated fatigue behavior and mechano-physical characterizations of in vitro physiological simulation of nitinol stents. J. Appl. Biomater. Biomech. 5(2):117–124, 2007.

    Google Scholar 

  25. Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Braunlich, M. Ulrich, G. Biamino, and A. Schmidt. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45(2):312–315, 2005.

    Article  Google Scholar 

  26. Schillinger, M., S. Sabeti, P. Dick, et al. Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation 115:2745–2749, 2007.

    Article  Google Scholar 

  27. Schillinger, M., S. Sabeti, C. Loewe, P. Dick, J. Amighi, W. Mlekusch, O. Schlager, M. Cejna, J. Lammer, and E. Minar. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N. Engl. J. Med. 354(18):1879–1888, 2006.

    Article  Google Scholar 

  28. Schneider, F., T. Fellner, J. Wilde, and U. Wallrabe. Mechanical properties of silicones for MEMS. J. Micromech. Microeng. 2008. doi:10.1088/0960-1317/18/6/065008.

    Google Scholar 

  29. Steegmueller, R., T. Fleckenstein, and A. Schuessler. Is Electropolishing Equal to Electropolishing? Proceedings from the Materials & Processes for Medical Devices Conference 2005, ASM 2006, pp. S.163–S.168.

  30. Zeller, T. Current state of endovascular treatment of femoro-popliteal artery disease. Vasc. Med. 12(3):223–234, 2007.

    Article  Google Scholar 

  31. Zhao, H. Q., A. Nikanorov, R. Virmani, R. Jones, E. Pacheco, and L. B. Schwartz. Late stent expansion and neointimal proliferation of oversized nitinol stents in peripheral arteries. Cardiovasc. Interv. Radiol. 32(4):720–726, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out within the project ‘‘RT3S—Real Time Simulation for Safe vascular Stenting’’, partially funded by the European Commission under the 7th Framework Programme, GA FP7-2009-ICT-4-248801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Pennati.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meoli, A., Dordoni, E., Petrini, L. et al. Computational Modelling of In Vitro Set-Ups for Peripheral Self-Expanding Nitinol Stents: The Importance of Stent–Wall Interaction in the Assessment of the Fatigue Resistance. Cardiovasc Eng Tech 4, 474–484 (2013). https://doi.org/10.1007/s13239-013-0164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-013-0164-4

Keywords

Navigation