Skip to main content
Log in

Design, development and microwave inter-comparison of dual slot antenna configurations for localized hepatic tumor management

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Slot antennas are generally preferred for localized liver cancer treatment modalities due to desired radiation characteristics. An iterative thermal/microwave numerical routine is used to analyze regular and miniature slot antenna configurations at 5.8 GHz. A thermal/microwave solver determines the specific absorption rate to malignant tissues as a pre- processing step to compute microwave solution in terms of propagation wave number, return loss and insertion loss. The regular and miniature dual slots antenna geometries were then developed to estimate the return loss characteristics against antennas slot lengths at a constant frequency of 5.8 GHz. Results reveal that the regular geometry has return loss less than −5 dB as compared to <−25 dB return loss for miniature slot antenna configuration. Furthermore, 5.8 GHz antenna geometry provides physical size reduction up to 50 %, lower fabrication cost and is a better minimally invasive choice due to further packed thermal ablation spots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jones C, Badger SA, Ellis G (2011) The role of microwave ablation in the management of hepatic colorectal metastases. The Surgeon 9(1):33–37

    Article  PubMed  CAS  Google Scholar 

  2. Bhardwaj N, Strickland AD, Ahmad F et al (2010) Liver ablation techniques: a review. Surg Endosc 24(2):254–265

    Article  PubMed  CAS  Google Scholar 

  3. Cavagnaro M, Amabile C, Bernardi P (2010) A minimally invasive antenna for microwave ablation therapies: design, performances, and experimental assessment. IEEE Trans Biomed Eng 58(4):949–959

    Article  PubMed  Google Scholar 

  4. Schaller G, Erb J, Engelbrecht R (1996) Field simulation of dipole antennas for interstitial microwave hyperthermia. IEEE Trans Microw Theory Tech 44:887–895

    Article  Google Scholar 

  5. Longo I, Gentili GB, Cerretelli M et al (2003) A coaxial antenna with miniaturized choke for minimally invasive interstitial heating. IEEE Trans Biomed Eng 50:82–88

    Article  PubMed  Google Scholar 

  6. Brace CL, Van DW, Lee FT et al (2004) Analysis and experimental validation of a triaxial antenna for microwave tumor ablation. Microw Symp Dig IEEE MTT-S 3:1437–1440

    Google Scholar 

  7. Wessapan T, Srisawatdhisukul S, Rattanadecho P (2011) The effects of dielectric shield on specific absorption rate and heat transfer in the human body exposed to leakage microwave energy. Int Commun Heat Mass Transf 38(2):255–262

    Article  Google Scholar 

  8. Cepeda M, Vera A, Leija L et al. (2008) Coaxial double slot antenna design for interstitial hyperthermia in muscle using a finite element computer modeling. IEEE international instrumentation and measurement technology conference I2MTC: 961–963

  9. Dos Santos I, Haemmerich D, Schutt D et al (2009) Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform. Phys Med Biol 54:627–640

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu YJ, Qiao AK, Nan Q et al (2006) Thermal characteristics of microwave ablation in the vicinity of an arterial bifurcation. Int J Hyperth 22:491–506

    Article  CAS  Google Scholar 

  11. Rourke AP, Lazebnik M, Bertram JM et al (2007) Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys Med Biol 52:4707–4719

    Article  Google Scholar 

  12. Sabariego RV, Landsea L, Obelleiro F (2000) Synthesis of an array antenna for hyperthermia applications. IEEE Trans Magn 36:1696–1699

    Article  Google Scholar 

  13. Camart JC, Despretz D, Chive M et al (1996) Modeling of various kinds of applicators used for microwave hyperthermia based on the FDTD method. IEEE Trans Microw Theory Tech 44:1811–1818

    Article  Google Scholar 

  14. Lagendijk JJ (2000) Hyperthermia treatment planning. Phys Med Biol 45:R61–R76

    Article  PubMed  CAS  Google Scholar 

  15. Bertram JM, Yang D, Converse MC (2006) Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model. BioMed Eng OnLine 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tungjitkusolmun S, Staelin ST, Haemmerich D (2002) Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans Biomed Eng 49:3–9

    Article  PubMed  Google Scholar 

  17. Lin JC, Shinji H, Wen LH et al (2000) Computer simulation and experimental studies of SAR distributions of interstitial arrays of sleeved-slot microwave antennas for hyperthermia treatment of brain tumors. IEEE Trans Microw Theory Tech 48(11):2191–2198

    Article  Google Scholar 

  18. Yang D, Converse MC, Mahvi DM (2007) Measurement and analysis of tissue temperature during microwave liver ablation. IEEE Trans Biomed Eng 54(1):150–155

    Article  PubMed  Google Scholar 

  19. Gabriel S (1996) The dielectric properties of biological tissues. III. parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  PubMed  CAS  Google Scholar 

  20. Hernan I, Vargas MD, William C et al (2004) Focused Microwave phased array thermotherapy for ablation of early-stage breast cancer: Results of thermal dose escalation. Ann Surg Oncol 11(2):139–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, J., Zafar, T., Zafar, H. et al. Design, development and microwave inter-comparison of dual slot antenna configurations for localized hepatic tumor management. Australas Phys Eng Sci Med 38, 593–601 (2015). https://doi.org/10.1007/s13246-015-0384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0384-z

Keywords

Navigation