Skip to main content
Log in

Radiation of sound in a semi-infinite hard duct inserted axially into a larger infinite lined duct

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

This article examines sound radiation from a hard semi-infinite duct placed symmetrically inside an acoustically lined duct. We introduce a wake on right handed region of the duct configuration to analyze sound radiation process for the trailing edge situation. The integral transforms together with Wiener–Hopf techniques render the solution of underlying problem. However expressions for field intensity involve infinite sums/products that enable solution using truncation approach. The sound radiation analysis is then observed graphically while using different choice of some pertinent parameters. It is worth mentioning that results of leading edge situation can be recovered as a limiting case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rawlins, A.D.: Acoustic diffraction by an absorbing semi-infinite plane in a moving fluid. Proc. R. Soc. Edinb. Ser A 72, 337–357 (1974)

    MathSciNet  MATH  Google Scholar 

  2. Jones, D.S.: Aerodynamic sound due to a source near a half-plane. J. Inst. Math. Appl. 9, 114–122 (1972)

    Article  MATH  Google Scholar 

  3. Balasubramanyam, B.: Aerodynamic sound due to a point source near a half-plane. IMA J. Appl. Math. 33(1), 71–81 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asghar, S., Ahmad, B., Ayub, M.: Point source diffraction by an absorbing half-plane. IMA J. Appl. Math. 46(3), 217–224 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rienstra, S.W.: Sound diffraction at a trailing edge. J. Fluid Mech. 108, 443–460 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Asghar, S., Hayat, T.: Diffraction of a spherical acoustic wave near absorbing finite plane. Can. Appl. Math. Quart. 5, 1–17 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Howe, M.S.: Attenuation of sound due to vortex shedding from a splitter plate in a mean flow duct. J. Sound Vib. 105(3), 385–396 (1986)

    Article  Google Scholar 

  8. Nawaz, R., Wahab, A., Rasheed, A.: An intermediate range solution to a diffraction problem with impedance conditions. J. Mod. Opt. 61(16), 1324–1332 (2014)

    Article  Google Scholar 

  9. Nawaz, R., Naeem, A., Ayub, M.: Point source diffraction by a slit in a moving fluid. Waves Random Complex Media 24(4), 357–375 (2014)

    Article  MathSciNet  Google Scholar 

  10. Ayub, M., Nawaz, R., Naeem, A.: Diffraction of an impulsive line source with wake. Phys. Scr. 82, 045402 (2010)

    Article  MATH  Google Scholar 

  11. Rawlins, A.D.: Acoustic diffraction by an absorbing semi-infinite plane in a moving fluid II. Proc. R. Soc. Edinb. ser A 75, 83–95 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Quinn, M.C., Howe, M.S.: Absorption of sound at a slot in a splitter plate in a mean-flow duct. J. Fluid Mech. 168, 1–30 (1986)

    Article  MATH  Google Scholar 

  13. Hassan, M., Rawlins, A.D.: Sound radiation in a planar trifurcated lined duct. Wave Motion 29, 157–174 (1999)

    Article  Google Scholar 

  14. Jones, D.S.: A simplifying technique in the solution of a class of diffraction problems. Quart. J. Math. 3(1), 189–196 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lawrie, J.B., Abrahams, I.D.: A brief historical perspective of the Wiener-Hopf technique. J. Eng. Math. 59, 351–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Afzal, M., Nawaz, R., Ayub, M., Wahab, A.: Acoustic scattering in flexible waveguide involving step discontinuity. PLoS One 9(8), e103807 (2014)

    Article  Google Scholar 

  17. Ayub, M., Tiwana, M.H., Mann, A.B.: Propagation of sound in a duct with mean flow. Commun. Nonlinear Sci. Numer. Simul. 14, 3578–3590 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ayub, M., Tiwana, M.H., Mann, A.B.: Influence of the acoustic dominant mode propagation in a trifurcated lined duct with different impedances. Phy. Scr. 81, 035402 (2010)

    Article  MATH  Google Scholar 

  19. Ayub, M., Tiwana, M.H., Mann, A.B.: Wiener-Hopf analysis of an acoustic plane wave in a trifurcated waveguide. Arch. Appl. Mech. 81, 701–713 (2011)

    Article  MATH  Google Scholar 

  20. Jones, D.S.: The Theory of Electromagnetism. Pergamon Press, London (1964)

    MATH  Google Scholar 

  21. Noble, B.: Methods based on the Wiener-Hopf Technique, 2nd edn. Chelsea Publishing Company, New York (1988)

    MATH  Google Scholar 

  22. Brown, J.W., Churchill, R.V.: Complex Variables and Applications. McGraw-Hill Inc, New York (1996)

    Google Scholar 

  23. Demir, A., Büyükaksoy, A.: Wiener-Hopf approach for predicting the transmission loss of a circular silencer with a locally reacting lining. Int. J. Eng. Sci. 43, 398–416 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lam, J.: Surface-wave reflection and refraction at an impedance discontinuity. J. Appl. Phys. 66(8), 3437–3444 (1989)

    Article  Google Scholar 

  25. Kaplunov, J.D., Markushevich, D.G.: Plane vibrations and radiation of an elastic layer lying on a liquid half-space. Wave Motion 17(3), 199–211 (1993)

    Article  MATH  Google Scholar 

  26. Cannel, P.A.: Edge scattering of aerodynamic sound by a lightly loaded elastic half-plane. Proc. R. Soc. A 347(1649), 213–238 (1975)

    Article  MathSciNet  Google Scholar 

  27. Cannel, P.A.: Acoustic edge scattering by a heavily loaded elastic half-plane. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 350(1660), 71–89 (1976)

  28. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. 2nd edn. Oxford University Press, Oxford (1948)

  29. Mittra, R., Lee, S.W.: Analytical Techniques in the Theory of Guided Waves. McMillan, New York (1971)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rab Nawaz.

Appendix

Appendix

In order to separate all the functions of Wiener–Hopf functional equation in different half planes, kernel function is required to be factorized so that it is regular in different half planes and is free of singularities also. The factorization of the kernel functions \(K(\alpha )\) and \(W(\alpha )\) is of the form

$$\begin{aligned} K(\alpha )=K_{+}(\alpha )K_{-}(\alpha )\quad \text { and }\quad W(\alpha )=W_{+}(\alpha )W_{-}(\alpha ) \end{aligned}$$

where \(K_{+}(\alpha )\) and \(W_{+}(\alpha )\) denote certain functions which are regular and free of zeros in upper half plane \(\mathrm{Im}\, \alpha >-\mathrm{Im}\,k\) and \(K_{-}(\alpha )\) and \(W_{-}(\alpha )\) denote certain functions which are regular and free of zeros in lower half plane \(\mathrm{Im}\,\alpha <\mathrm{Im}\,k.\) It is noted that the functions \(K(\alpha )\) and \(W(\alpha )\) are even in \(\alpha \) and more precisely their respective derivatives are zero at \(\alpha =0.\) So these functions can be factorized by applying the infinite product expansion of an integral function with infinitely many zeros [20, 28]. From Eq. (35) we write \(K(\alpha )\) as

$$\begin{aligned} K(\alpha )=\frac{\cos \kappa b-(\frac{{i}\zeta }{k})\kappa \sin \kappa b}{\kappa \sin \kappa a(\cos \kappa (b-a)-(\frac{{i}\zeta }{k})\kappa \sin \kappa (b-a))}. \end{aligned}$$

It is obvious that the product factorization of \(K(\alpha )\) depends upon the factorization of

$$\begin{aligned} I(\alpha )= & {} \cos \kappa b-\left( \frac{{i}\zeta }{k}\right) \kappa \sin \kappa b,\\ L(\alpha )= & {} \cos \kappa (b-a)-\left( \frac{{i}\zeta }{k}\right) \kappa \sin \kappa (b-a), \end{aligned}$$

and

$$\begin{aligned} N(\alpha )=\kappa \sin \kappa a. \end{aligned}$$

Whilst using the procedure outlined by Mittra and Lee [29], it is found that

$$\begin{aligned} I(\alpha )= & {} \sqrt{\cos kb-{i}\zeta \sin kb}\exp \left\{ \frac{{i} \alpha b}{\pi }\left[ 1-C-\ln \left( \frac{\left| \alpha \right| b}{\pi }\right) +\frac{{i} \pi }{2}\right] \right\} \\&\times {\displaystyle \prod \limits _{n=1}^{\infty }} (1+\frac{\alpha }{\beta _{n}})\exp \left( \frac{{i}\alpha b}{n\pi }\right) ,\\ L(\alpha )= & {} \sqrt{\cos k(b-a)-{i}\zeta \sin k(b-a)}\nonumber \\&\times \,\exp \left\{ \frac{{i} \alpha (b-a)}{\pi }\left[ 1-C-\ln \left( \frac{\left| \alpha \right| (b-a)}{\pi }\right) +\frac{{i} \pi }{2}\right] \right\} \\&\times {\displaystyle \prod \limits _{n=1}^{\infty }} (1+\frac{\alpha }{\delta _{n}})\exp \left( \frac{{i}\alpha (b-a)}{n\pi }\right) , \end{aligned}$$

and

$$\begin{aligned} N(\alpha )= & {} \sqrt{k\sin ka}\exp \left\{ \frac{{i} \alpha a}{\pi }\left[ 1-C-\ln \left( \frac{\left| \alpha \right| a}{\pi }\right) +\frac{{i} \pi }{2}\right] \right\} \\&\times {\displaystyle \prod \limits _{n=1}^{\infty }} (1+\frac{\alpha }{\nu _{n}})\exp \left( \frac{{i}\alpha a}{n\pi }\right) . \end{aligned}$$

Thus

$$\begin{aligned} K(\alpha )=K_{+}(\alpha )K_{-}(\alpha ) \end{aligned}$$

where

$$\begin{aligned}&K_{+}(\alpha )=\sqrt{\frac{\cos kb-{i}\zeta \sin kb}{k\sin ka (\cos k(b-a)-{i}\zeta \sin k(b-a))}}\\&\quad \times \frac{\exp \left\{ \frac{{i} \alpha b}{\pi }\left[ 1-C-\ln \left( \frac{\left| \alpha \right| b}{\pi }\right) +\frac{{i} \pi }{2}\right] \right\} }{\exp \left\{ \frac{{i} \alpha a}{\pi }\left[ 1-C-\ln \left( \frac{\left| \alpha \right| a}{\pi }\right) +\frac{{i} \pi }{2}\right] \right\} \exp \left\{ \frac{{i} \alpha (b-a)}{\pi }\left[ 1-C-\ln \left( \frac{\left| \alpha \right| (b-a)}{\pi }\right) +\frac{{i} \pi }{2}\right] \right\} }\\&\quad \times {\displaystyle \prod \limits _{n=1}^{\infty }} \frac{(1+\frac{\alpha }{\beta _{n}})\exp \left( \frac{{i}\alpha b}{n\pi }\right) }{(1+\frac{\alpha }{\nu _{n}})\exp \left( \frac{{i}\alpha a}{n\pi }\right) (1+\frac{\alpha }{\delta _{_{n}}})\exp \left( \frac{{i}\alpha (b-a)}{n\pi }\right) }. \end{aligned}$$

Here \(\beta _{n}^{,}s,\ \delta _{_{n}}^{,}s\) and \(\nu _{n}^{,}s\) are the roots of the functions \(I(\alpha ),\) \(L(\alpha )\) and \(N(\alpha ),\) respectively. That is

$$\begin{aligned} I(\beta _{n})=0, \quad L(\delta _{n})=0,\quad N(\nu _{n})=0 \quad n=1, 2, 3,\ldots \end{aligned}$$

with

$$\begin{aligned} I_{-}(\alpha )=I_{+}(-\alpha ),\quad L_{-}(\alpha )=L_{+} (-\alpha ),\quad N_{-}(\alpha )=N_{+}(-\alpha ) \end{aligned}$$

and C being the Euler’s constant given by \(C=0.57721\ldots \) and \(K_{-} (\alpha )=K_{+}(-\alpha )\). In the respective region of analyticity when \(\left| \alpha \right| \rightarrow \infty \) we have

$$\begin{aligned} K_{\pm }(\alpha )=O(\left| \alpha \right| ^{-\frac{1}{2}}). \end{aligned}$$

For \(W(\alpha )\) given by Eq. (42) we may write

$$\begin{aligned} W(\alpha )=\frac{\sin \kappa b+(\frac{{i}\zeta }{k})\kappa \cos \kappa b}{\kappa \cos \kappa a(\cos \kappa (b-a)-(\frac{{i}\zeta }{k})\kappa \sin \kappa (b-a))}. \end{aligned}$$

While opting a similar way, we get

$$\begin{aligned}&W_{+}(\alpha )=\sqrt{\frac{\sin kb+{i}\zeta \cos kb}{k\cos ka (\cos k(b-a)-{i}\zeta \sin k(b-a))}}\\&\quad \times \frac{\exp \left\{ \frac{{i} \alpha b}{\pi }\left[ 1-C-\ln \left( \frac{\left| \alpha \right| b}{\pi }\right) +\frac{{i} \pi }{2}\right] \right\} }{\exp \left\{ \frac{{i} \alpha a}{\pi }\left[ 1-C-\ln \left( \frac{\left| \alpha \right| a}{\pi }\right) +\frac{{i} \pi }{2}\right] \right\} \exp \left\{ \frac{{i} \alpha (b-a)}{\pi }\left[ 1-C-\ln \left( \frac{\left| \alpha \right| (b-a)}{\pi }\right) +\frac{{i} \pi }{2}\right] \right\} }\\&\quad \times {\displaystyle \prod \limits _{n=1}^{\infty }} \frac{(1+\frac{\alpha }{\widetilde{\beta }_{n}})\exp \left( \frac{{i} \alpha b}{n\pi }\right) }{(1+\frac{\alpha }{\widetilde{\nu }_{n}})\exp \left( \frac{{i}\alpha a}{n\pi }\right) (1+\frac{\alpha }{\delta _{_{n}}} )\exp \left( \frac{{i}\alpha (b-a)}{n\pi }\right) }. \end{aligned}$$

Here \(\widetilde{\beta }_{n}^{,}s\) and \(\widetilde{\nu }_{n}^{,}\) s are the roots of the functions

$$\begin{aligned} \frac{\sin \kappa b}{\kappa }+\left( \frac{{i}\zeta }{k}\right) \cos \kappa b=0, \end{aligned}$$

and

$$\begin{aligned} \cos \kappa a=0 \end{aligned}$$

respectively. Where C being the Euler’s constant given by \(C=0.57721\ldots \) and \(W_{-}(\alpha )=W_{+}(-\alpha )\). When \(\left| \alpha \right| \rightarrow \infty \) then in the respective region of analyticity

$$\begin{aligned} W_{\pm }(\alpha )=O(\left| \alpha \right| ^{-\frac{1}{2}}). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwana, M.H., Nawaz, R. & Mann, A.B. Radiation of sound in a semi-infinite hard duct inserted axially into a larger infinite lined duct. Anal.Math.Phys. 7, 525–548 (2017). https://doi.org/10.1007/s13324-016-0154-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-016-0154-4

Keywords

Mathematics Subject Classification

Navigation