Skip to main content
Log in

Invited Paper: CIGS-based thin film solar cells and modules: Unique material properties

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Although CIGS solar cells consist of a polycrystalline thin film grown on a glass substrate, more than 20% conversion efficiency has been achieved. The efficiency has reached the same level as polycrystalline silicon solar cells. This high efficiency has not yet been observed in other thin film solar cells including thin film Si and CdTe. Therefore, it is important to understand the mechanisms that allow CIGS solar cells to exhibit high conversion efficiencies. This paper discusses the origin of the high efficiency and demonstrates that it is caused by the unique material properties of CIGS films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt: Res. Appl. 19, 894 (2011).

    Article  CAS  Google Scholar 

  2. S. Kijima, T. Morimoto, T. Yagioka, M. Nagahashi, Y. Chiba, H. Sugimoto, and H. Hakuma, Proc. 21 st Photovoltaic Science and Engineering Conf., 2B-3O-01, PVSEC-21, Fukuoka, Japan (2011).

  3. T. Nakada and A. Kunioka, Jpn. J. Appl. Phys. 24, 536 (1985).

    Article  CAS  Google Scholar 

  4. D. Hariskos, S. Spiering, and M. Powalla, Thin. Sol. Fil. 480, 99 (2005).

    Article  Google Scholar 

  5. N. Naghavi, D. Abou-Ras, N. Allsop, N. Barreau, S. Bucheler, A. Ennaoui, C.-H. Fischer, C. Guillen, D. Hariskos, J. Herrero, R. Klenk, K. Kushiya, D. Lincot, R. Menner, T. Nakada, C. Platzer-Bjorkman, S. Spiering, A. N. Tiwari, and T. Torndahl, Prog. Photovolt: Res. Appl. 8, 411 (2010).

    Article  Google Scholar 

  6. Y. Hagiwara, T. Nakada, and A. Kunioka, Sol. Energy Mater. Sol. Cells 67, 267 (2001).

    Article  CAS  Google Scholar 

  7. T. Nakada, K. Yamada, R. Arai, H. Ishizaki, and N. Yamada, Mat. Res. Soc. Proc. 865, 327 (2005).

    Article  CAS  Google Scholar 

  8. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, Prog. Photovolt: Res. Appl., 20, 6 (2012).

    Article  CAS  Google Scholar 

  9. J. A. del Cueto, S. Rummel, B. Kroposki, C. Osterwald, and A. Anderberg, Proc. 33 rd Photovoltaic Specialists Conf. pp. 1–6, IEEE, San Diego, USA (2008).

    Google Scholar 

  10. M. Powalla, B. Dimmler, and K.-H. Groß, Proc. 20 th European Photovoltaic Solar Energy Conf., p. 1689, WIP, Barcelona, Spain (2005).

    Google Scholar 

  11. Y. Ueda, Tech. Digest 6 th Korean-China-Japan Intn. Symp. Photovoltaics, p. 53, Busan, Korea (2011).

  12. M. Imaizumi, S. Matsuda, S. Kawakita, T. Sumita, T. Takamoto, T. Ohshima, and M. Yamaguchi, Prog. Photovolt: Res. Appl., 13, 529 (2005).

    Article  CAS  Google Scholar 

  13. S. Han, F. S. Hasoon, and J. W. Pankow, Appl. Phys. Lett. 87, 151904 (2005).

    Article  Google Scholar 

  14. S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B, 57, 9642 (1998).

    Article  CAS  Google Scholar 

  15. M. Turcu, I. M. Kötschau, and U. Rau, J. Appl. Phys., 91, 1395 (2002).

    Article  Google Scholar 

  16. M. Gloeckler, Dissertation Device Physics of Cu(In,Ga)Se2 Thin-Film Solar Cells, pp.49–53, Colorado State Univ., Colorado (2005).

    Google Scholar 

  17. C. H. Huang, S. S. Li, and T. J. Anderson, Proc. 29 th IEEE Photovoltaic Specialists Conf., p. 748, New Orleans, IEEE, USA (2002).

    Google Scholar 

  18. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C L. Perkins, B. To, and R. l Noufi, Prog. Photovolt: Res. Appl. 16, 235 (2008).

    Article  CAS  Google Scholar 

  19. P. Jackson, R. Wuerz, U. Rau, J. Mattheis, M. Kurth, T. Schloetzer, G. Bilger, and J. H. Werner, Prog. Photovolt: Res. Appl. 15, 507 (2007).

    Article  CAS  Google Scholar 

  20. T. Nakada, Proc. 19 st Photovoltaic Science and Engineering Conf., CIG-PL5, Jeju, Korea (2009).

  21. M. J. Hetzer, Y. M. Strzhemechny, M. Gao, M. A. Contreras, A. Zunger, and L. J. Brillson, Appl. Phys. Lett. 86, 162105 (2005).

    Article  Google Scholar 

  22. M. Romero, C.-S. Jiang, R. Noufi, and M. M. Al-Jassim, Appl. Phys. Lett. 86, 143115 (2005).

    Article  Google Scholar 

  23. C. Persson and A. Zunger, Appl. Phys. Lett. 87, 211904 (2005).

    Article  Google Scholar 

  24. M. J. Romero, K. Ramanathan, M. A. Contreras, M. M. Al-Jassim, R. Noufi, and P. Sheldon, Appl. Phys. Lett. 83, 4770 (2003).

    Article  CAS  Google Scholar 

  25. M. Gloeckler, J. R. Sites, and W. K. Metzger, J. Appl. Phys. 98, 113704 (2005).

    Article  Google Scholar 

  26. M. J. Hetzer, Y. M. Strzhemechny, M. Gao, M. A. Contreras, A. Zunger, and L. J. Brillson, Appl. Phys. Lett. 86, 162105 (2005).

    Article  Google Scholar 

  27. M. J. Romero, K. Ramanathan, M. A. Contreras, M. M. Al-Jassim, R. Noufi, and P. Sheldon, Appl. Phys. Lett. 83, 4770 (2003).

    Article  CAS  Google Scholar 

  28. S. Siebentritt, S. Sadewasser, M. Wimmer, C. Leendertz, T. Eisenbarth, and M. C. Lux-Steiner, Phys. Rev. Lett. 97, 146601 (2006).

    Article  Google Scholar 

  29. C.-S. Jiang, R. Noufi, K. Ramanathan, J. A. Abu Shama, H. R. Moutinho, and M. M. Al-Jassim, Appl. Phys. Lett. 85, 2625 (2004).

    Article  CAS  Google Scholar 

  30. M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, and H. W. Schock, Sol. Energy Mater. Sol. Cells 41, 335 (1996).

    Article  Google Scholar 

  31. J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, and L. Stolt, Proc. 23 rd IEEE Photovoltaic Specialists Conf., p. 364, IEEE, Lousville, USA (1993).

    Google Scholar 

  32. M. Bodeg Ård, K. Granath, and L. Stolt, Thin. Sol. Fil. 361, 9 (2000).

    Article  Google Scholar 

  33. J. Holz, F. Karg and H. Philipsborn, Proc. 12 th EC Photovoltaic Solar Energy Conf., p. 1592, Amsterdam, Netherlands (1994).

  34. M. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter, W. Schock, Proc. 1 st World Conf. Photovoltaic Energy Conversion, p. 156, WCPEC, Hawaii, USA (1994).

    Google Scholar 

  35. N. Kohara, T. Negami, M. Nishitani, Y. Hashimoto, and T. Wada, Appl. Phys. Lett., 71, 835 (1997).

    Article  CAS  Google Scholar 

  36. R. Kimura, T. Mouri, T. Nakada, S. Niki, A. Yamada, P. Fons, T. Matsuzawa, K. Takahashi, and A. Kunioka, Jpn. J. Appl. Phys., 38, 899 (1999).

    Article  Google Scholar 

  37. T. Nakada, D. Iga, H. Ohbo, and A. Kunioka, Jpn. J. Appl. Phys., 36, 732 (1997).

    Article  CAS  Google Scholar 

  38. T. Nakada, Y. Honishi, Y. Yatsushiro, and H. Nakakoba, Proc. 37 th IEEE Photovoltaic Specialist Conf., IEEE, Seattle, USA (2011).

    Google Scholar 

  39. J. H. Yun, K. H. Kim, B. T. Ahn, and K. H. Yoon, Proc. 4 th world conf. Photovoltaic Energy Conversion, pp. 509–511, WCPEC (2006).

  40. A. Chiril, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Nature Mater. 10, 857 (2011).

    Article  Google Scholar 

  41. L. Kronik, D. Cahen, and H. W. Schock, Adv. Mater. 10, 31 (1998).

    Article  CAS  Google Scholar 

  42. M. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, and R. Noufi, Proc. 26 th IEEE Photovoltaic Specialists Conf., p. 359, IEEE, CA, USA (1997).

    Google Scholar 

  43. D. W. Niles, K. Ramanathan, F. Hasoon, and R. Noufi, J. Vac. Sci. Technol. A, 15, 3044 (1997).

    Article  CAS  Google Scholar 

  44. R. Caballero, C. A. Kaufmann, T. Eisenbarth, A. Eicke, T. Unold, R. Klenk, and H. W. Schock, Proc. Mater. Res. Soc. Symp. 1165, M02-10, San Francisco (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokio Nakada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakada, T. Invited Paper: CIGS-based thin film solar cells and modules: Unique material properties. Electron. Mater. Lett. 8, 179–185 (2012). https://doi.org/10.1007/s13391-012-2034-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2034-x

Keywords

Navigation