Skip to main content
Log in

Using polyurethane, ethylene-vinyl acetate hotmelt, and nano hexagonal boron nitride particles to electrospin high surface adhesion polymer fibers

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, we presented the use of polyurethane, ethylene-vinyl acetate hotmelt, and nano hexagonal boron nitride particles to prepare high surface adhesion polymer fibers via an elertrospinning method. The shear strength, dynamic tensile properties, and surface morphology have been investigated. These polymer fibers were found to have high shear strength, high tensile stress, and high tensile strain, which may have a good potential application in the matrix materials for thermal interface materials. Polymer fibers with and without nano hexagonal boron nitride particles showed the shear strength of 6.52 MPa and 5.44 MPa respectively on being heated up at 150°C for 45 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lee, M. Early, and M. Pellilo, Microelectron. J. 28, R13 (1997).

    Article  Google Scholar 

  2. G. De Mey, J. Pilarski, M. Wojcik, M. Lasota, J. Banaszczyk, B. Vermeersch, and A. Napieralski, Int. Commun. Heat Mass Transfer 36, 210 (2009).

    Article  Google Scholar 

  3. K. C. Otiaba, N. N. Ekere, R. S. Bhatti, S. Mallik, M. O. Alam, and E. H. Amalu, Microelectron. Reliab. 51, 2031 (2011).

    Article  Google Scholar 

  4. A. J. McNamara, Y. Joshi, and Z. M. M. Zhang, Int. J. Therm. Sci. 62, 2 (2012).

    Article  Google Scholar 

  5. V. Goyal and A. A. Balandin, Appl. Phys. Lett. 100, 073113 (2012).

    Article  Google Scholar 

  6. H. Y. Chen, M. H. Chen, J. T. Di, G. Xu, H. B. Li, and Q. W. Li, J. Phys. Chem. C 116, 3903 (2012).

    Article  Google Scholar 

  7. J. Due and A. J. Robinson, Appl. Therm. Eng. 50, 455 (2013).

    Article  Google Scholar 

  8. N. Bajaj, G. Subbarayan, and S. V. Garimella, Int. J. heat Mass Transfer 55, 3560 (2012).

    Article  Google Scholar 

  9. C. P. Ching and M. Devarajan, Thermochim. Acta 544, 27 (2012).

    Article  Google Scholar 

  10. K. M. F. Shahil and A. A. Balandin, Nano Lett. 12, 861 (2012).

    Article  Google Scholar 

  11. Y. Liu, L. Q. Zhang, W. C. Wang, H. T. Yu, and Y. L. Lu, J. Appl. Polym. Sci. 123, 2875 (2012).

    Article  Google Scholar 

  12. K. J. Solis and J. E. Martin, J. Appl. Phys. 111, 073507 (2012).

    Article  Google Scholar 

  13. H. Yu, L. L. Li, and Y. J. Zhang, Scripta Mater. 66, 931 (2012).

    Article  Google Scholar 

  14. J. R. Wasniewski, D. H. Altman, S. L. Hodson, T. S. Fisher, A. Bulusu, S. Graham, and B. A. Cola, J. Electron. Pack. 134, 020901 (2012).

    Article  Google Scholar 

  15. K. M. F. Shahil and A. A. Balandin, Solid State Commun. 152, 1331 (2012).

    Article  Google Scholar 

  16. A. Hamdan, F. Sahli, R. Richards, and C. Richards, J. Nanoparticle Res. 14, 1111 (2012).

    Article  Google Scholar 

  17. L. H. Sinh, J. M. Hong, B. T. Son, N. N. Trung, and J. Y. Bae, Polym. Compos. 33, 2140 (2012).

    Article  Google Scholar 

  18. J. P. Gwinn and R. L. Webb, Microelectron. J. 34, 215 (2003).

    Article  Google Scholar 

  19. J. Xu, A. Munari, E. Dalton, A. Mathewson, and K. M. Razeeb, J. Appl. Phys. 106, 124310 (2009).

    Article  Google Scholar 

  20. W. Lin, K. S. Moon, and C. P. Wong, Adv. Mater. 21, 2421 (2009).

    Article  Google Scholar 

  21. Y. Liu, L. Q. Zhang, W. C. Wang, H. T. Yu, and Y. L. Lu, J. Appl. Polym. Sci. 123, 2875 (2012).

    Article  Google Scholar 

  22. H. Yu, L. L. Li, T. Kido, G. N. Xi, G. C. Xu, and F. Guo, J. Appl. Polym. Sci. 124, 669 (2012).

    Article  Google Scholar 

  23. J. A. Mapkar, A. Belashi, L. M. Berhan, and M. R. Coleman, Compos. Sci. Technol. 75, 1 (2013).

    Article  Google Scholar 

  24. M. Alcoutlabi, H. Lee, J. V. Watson, and X. W. Zhang, J. Mater. Sci. 48, 2690 (2013).

    Article  Google Scholar 

  25. R. S. Zhong, Y. H. Qin, D. F. Niu, J. W. Tian, X. S. Zhang, X. G. Zhou, S. G. Sun, and W. K. Yuan, J. Power Sources 225, 192 (2013).

    Article  Google Scholar 

  26. H. Lee, M. Alcoutlabi, J. V. Watson, and X. W. Zhang, J. Polym. Sci. Part B 51, 349 (2013).

    Article  Google Scholar 

  27. S. S. Manickam, U. Karra, L. W. Huang, N. N. Bui, B. K. Li, and J. R. McCutcheon, Carbon 53, 19 (2013).

    Article  Google Scholar 

  28. Y. J. Qiu, J. Yu, W. H. Wu, J. Yin, and X. D. Bai, J. Solid State Electrochem. 17, 565 (2013).

    Article  Google Scholar 

  29. G. Rodionova, T. Saito, M. Lenes, O. Eriksen, O. Gregersen, R. Kuramae, and A. Isogai, J. Polym. Environ. 21, 207 (2013).

    Article  Google Scholar 

  30. Z. H. Ren, Z. Xiao, S. M. Yin, J. Q. Mai, Z. Y. Liu, G. Xu, X. Li, G. Shen, and G. R. Han, J. Alloy. Compd. 552, 518 (2013).

    Article  Google Scholar 

  31. P. Singh, K. Mondal, and A. Sharma, J. Collid Interf. Sci. 394, 208 (2013).

    Article  Google Scholar 

  32. Q. Shi, N. Vitchuli, J. Nowak, S. Jiang, J. M. Caldwell, F. Breidt, M. Bourham, X. W. Zhang, and M. McCord, J. Appl. Polym. Sci. 128, 1219 (2013).

    Article  Google Scholar 

  33. C. Nah, K. U. Jeong, Y. S. Lee, S. H. Lee, M. M. A. Kader, H. K. Lee, and J. H. Ahn, Polym. Int. 62, 375 (2013).

    Article  Google Scholar 

  34. A. Nandakumar, Z. T. Birgani, D. Santos, A. Mentink, N. Auffermann, K. van der Werf, M. Bennink, L. Moroni, C. van Blitterswijk, and P. Habibovic, Biofabrication 5, 015006 (2013).

    Article  Google Scholar 

  35. X. Q. Li, M. A. Kanjwal, L. Lin, and I. S. Chronakis, Colloid Surf. B 103, 182 (2013).

    Article  Google Scholar 

  36. H. Zhang, X. L. Jia, F. X. Han, J. Zhao, Y. H. Zhao, Y. B. Fan, and X. Y. Yuan, Biomaterials 34, 2202 (2013).

    Article  Google Scholar 

  37. Y. Q. Cai, L. Yan, G. Y. Liu, H. Y. Yuan, and D. Xiao, Biosensor Bioelectron. 41, 875 (2013).

    Article  Google Scholar 

  38. Y. F. Goh, I. Shakir, and R. Hussain, J. Mater. Sci. 48, 3027 (2013).

    Article  Google Scholar 

  39. N. Nseir, O. Regev, T. Kaully, J. Blumenthal, S. Levenberg, and E. Zussman, Tissue Eng. Part C 19, 257 (2013).

    Article  Google Scholar 

  40. A. Tiwari, Y. Sharma, S. Hattori, D. Terada, A. K. Sharma, A. P. F. Turner, and H. Kobayashi, Biopolymers 99, 334 (2013).

    Article  Google Scholar 

  41. M. J. Fabra, A. Lopez-Rubio, and J. M. Lagaron, Food Hydrocolloid. 32, 106 (2013).

    Article  Google Scholar 

  42. X. Tang, H. W. Cui, X. Z. Lu, Q. Fan, Z. C. Yuan, L. L. Ye, and J. Liu, Proc. 2011 IEEE 61 st Electron. Compon. Technol. Conf. (ECTC 2011), p. 673, Lake Buena Vista, FL, USA (2011).

    Google Scholar 

  43. H. X. Lai, X. Z. Lu, H. W. Cui, X. H. Liu, S. Chen, T. A. Chen, and J. Liu, Proc. 2010 11 th In. Con. Electron. Pack. Technol. High Density Pack. (ICEPT-HDP 2010), p. 235, Xi’an, China (2010).

    Google Scholar 

  44. H. W. Cui, D. S. Li, and Q. Fan, Electron. Mater. Lett. 9, 1 (2013).

    Article  Google Scholar 

  45. H. W. Cui, D. S. Li, and Q. Fan, Int. J. Adhes. Adhes. 44, 232 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Wang Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, HW., Tang, X. Using polyurethane, ethylene-vinyl acetate hotmelt, and nano hexagonal boron nitride particles to electrospin high surface adhesion polymer fibers. Electron. Mater. Lett. 10, 183–189 (2014). https://doi.org/10.1007/s13391-013-3089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3089-z

Keywords

Navigation